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ABSTRACT

The runtime of unsteady incompressible flows were reduced through different techniques in

the formulation and solution of the governing equations. The implicit Runge-Kutta based IRK-

SIMPLER algorithm was developed and compared to the Crank-Nicholson based SIMPLER and

the explicit RK-SIMPLER algorithms. The IRK-SIMPLER algorithm was tested for steady and

unsteady problems, both on structured Cartesian and unstructured vertex-centered median-dual

grids, and proved to be an accurate and robust algorithm that also required less runtime. Further,

a second order unstructured Flux Corrected Method improved the accuracy of flux calculation

with minimal/negligible increase in runtime. The Flux Corrected Method provided a small stencil

scheme that required little additional runtime compared to the commonly used Power Law scheme.

Wind turbine cases were simulated with momentum source modeling. Both steady rotor models

and three variations of the unsteady momentum source model were tested. The power predicted

by the simulations matched experiments well, and for the cases presented, the simulations required

447 times less runtime than traditional methods.
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CHAPTER 1. INTRODUCTION

1.1 Background

Numerical simulation of complex and large scale engineering fluid flow problems requires sub-

stantial resources, including time and computing power. One example is the simulation of flow

through a wind farm, which provides a challenge due to the differences in the time and length

scales present. Two possible types of remedies to this problem arise: (1) improving the underlying

algorithms and methods used to discretize and solve the equations, and (2) using the advances in

computing power, such as parallel processing and graphics processing unit acceleration, to solve the

equations faster. There continues to be abundant research into using greater computing power, but

the area of algorithmic improvements provides an opportunity to develop new methods that increase

the efficiency and accuracy of flow simulation, no matter what computing power is available.

The present research focuses on solving unsteady incompressible flows and the particular meth-

ods required to solve these problems. This work investigates three different areas in an attempt

to reduce runtime: algorithms to solve the set of coupled equations, time integration methods for

unsteady flows, and interpolation schemes to compute fluxes at interfaces. Several test cases ex-

amine the accuracy and efficiency of the new methods, including steady and unsteady flows and

the flow through wind turbines. The rest of this document is laid out as follows. The remainder of

Chapter 1 covers the background of previous methods used to solve incompressible flows. Chapter 2

discusses the development of new algorithms, and time integration methods, required for unsteady

simulation, using several test cases to evaluate the different algorithms. Chapter 3 covers the for-

mulation of the equations on unstructured vertex-centered grids. Chapter 4 investigates several flux

interpolation methods for both structured and unstructured grids. Chapter 5 discusses the details

of turbulence modeling with application to unstructured grids. Chapter 6 covers the application of
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these new methods to the simulation of flow around wind turbines. Chapter 7 covers conclusions

and recommendations for future work.

1.2 Unsteady Incompressible Navier-Stokes Equations

The unsteady incompressible Navier-Stokes equations are written as

∇ · (ρ~V ) =0 (1.1)

∂(ρ~V )

∂t
+∇ · (ρ~V ~V ) =−∇p+∇ · (µ∇~V ) + ~S , (1.2)

where ρ, ~V , t, p, µ, and ~S represent fluid density, velocity, time, pressure, dynamic viscosity, and

source term, respectively. A major difficulty in solving these equations is the lack of an equation

to solve for pressure, as pressure does not appear in the continuity equation (Eq. 1.1) and only

appears as a source in the momentum equation (Eq. 1.2). If the above equations are discretized in

space using the finite volume method, the continuity equation becomes a fully discrete, algebraic

equation of the form

nfaces∑
f=1

(ρ~V ) · ~A = 0 , (1.3)

where ~A represents the area vector pointing out of the control volume, and the summation is

over all control volume faces of a cell. Discretizing the momentum equation in space results in a

semi-discrete equation of the form

d~V

dt
= ~F (t, ~V , p) =

~R

ρ∆∀
. (1.4)

where ~R contains all integrated terms in the momentum equation excluding time derivative (i.e.

convection, diffusion, pressure gradient, and source terms).

The semi-discrete momentum equation (Eq. 1.4) and discrete continuity equation (Eq. 1.3) form

differential algebraic equations (DAEs) (defined as type 2 in Harier [1]) and have the following form.

d~V

dt
= f(~V , p) (1.5)

0 = g(~V ) (1.6)



www.manaraa.com

3

The spatially discretized momentum terms are contained in f , and the discrete continuity terms

are contained in g. DAEs differ from ordinary differential equations (ODEs) as they cannot be

simply updated in time simultaneously because there is an equation that does not contain a time

derivative term. In the case of the incompressible Navier-Stokes equations, this form does not lead

to a straightforward solution of pressure.

Some of the many algorithms developed to solve the incompressible Navier-Stokes equations

will be discussed in Section 1.2.1. Sections 1.2.2 and 1.2.3 discuss two other important aspects

of solving these equations, time integration methods and flux interpolation methods. After the

equations are discretized, integrated, and an algorithm is developed, the methods by which the

equations are solved can make a significant difference on the solution’s accuracy, as well as how

quickly it can be achieved. Some of the different numerical methods are discussed in Section 1.2.4.

1.2.1 Algorithms

In solving unsteady incompressible flow problems, traditional iterative algorithms become nu-

merically inefficient as problems become increasingly complex. Pressure is not a variable in the

continuity equation and does not have an explicit equation. Three approaches are often used to rem-

edy this problem: (a) artificial compressibility methods [2], (b) vorticity-streamfunction approach

[3], and (b) pressure-based methods.

Pressure-based methods derive an equation for pressure to enforce continuity. Projection or

fractional step methods [4] are explicit, pressure-based methods which calculate an intermediate

velocity, solve a pressure equation to enforce continuity, and correct velocity by using an opera-

tor splitting. The Semi-Implicit Method for Pressure Linked Equations (SIMPLE) and SIMPLE

Revised (SIMPLER) family of algorithms [5] are implicit pressure-based methods which derive an

equation for pressure (or pressure correction) by substituting the discretized momentum equations

into the discretized continuity equation. The SIMPLER algorithm is based on an exact pressure

equation to find pressure and an approximate pressure correction equation that adjusts velocity
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to satisfy continuity. The SIMPLE and SIMPLER family of algorithms requires relaxation and

sub-iterations at each time step to converge.

In an attempt to improve the efficiency of pressure-based methods and increase the convergence

rate, many variants of the pressure-based algorithms have been developed including Runge-Kutta

SIMPLER (RK-SIMPLER) [6], Pressure-Implicit with Splitting of Operators (PISO) [7], Coupled

and Linked Equations Algorithm Revised (CLEAR) [8], and Inner Doubly-Iterative Efficient Algo-

rithm for Linked equations (IDEAL) [9]. Among these algorithms, CLEAR and IDEAL are implicit

algorithms, which use relaxation and sub-iterations to converge at each time step; while PISO (an

implicit algorithm) and RK-SIMPLER (an explicit algorithm) update the solution in time without

requiring sub-iterations within a time step.

RK methods are commonly used in solving Euler equations [10],[11] and the compressible Navier-

Stokes equations [12],[13],[14] because the spatially discretized conservation equations form ordinary

differential equations that are integrated in time with RK methods. However, for incompressible

flow, there is no explicit equation for pressure, and the spatially discretized continuity and mo-

mentum equations form differential algebraic equations with an index of 2 as defined in Hairer [1].

Solving the incompressible Navier-Stokes equations with RK methods is more intricate than the

compressible Navier-Stokes equations. Several incompressible algorithms that use RK methods are

developed in [15],[16],[17],[18],[19],[20],[21], and [22]. Sanderse [22] developed an algorithm that

uses explicit RK methods and a projection method to integrate in time while achieving a higher

temporal order of accuracy. Sanderse shows that to achieve the temporal order of accuracy of the

RK method, continuity must be accounted for at each RK stage. The primary interest in RK based

methods is the accuracy of the algorithm, not on the the efficiency of the algorithms, which is often

not presented or discussed.

The RK-SIMPLER algorithm is a pressure-based method developed to solve the incompress-

ible Navier-Stokes equations using explicit RK methods. The RK-SIMPLER algorithm forms an

equation for pressure by combining the discretized continuity and momentum equations in exactly

the same way as the original SIMPLER algorithm. The solution of this equation is used as an
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explicit source term in the momentum equations. This results in momentum equations becoming

ordinary differential equations, which are integrated in time with explicit RK stages. However, the

RK-SIMPLER algorithm often requires small time steps due to the explicit nature of the algorithm

[6].

To relax the time step restrictions, implicit RK stages are used in place of the explicit stage

equations. As a part of this research, an implicit RK algorithm is developed called IRK-SIMPLER.

For both the RK-SIMPLER and IRK-SIMPLER algorithms, two variants are investigated. The

first variant derives and solves the pressure equation once per time step, like the RK-SIMPLER

algorithm in Rajagopalan [6]. The second variant uses the conclusion of Sanderse [22] that pressure

should be solved at each stage to improve accuracy. These four different algorithms are developed

(in Secs. 2.3.3 and 2.3.4) and tested to determine the algorithm that results in an accurate solution

with the lowest runtime.

1.2.2 Time Integration Methods

Integration of a semi-discrete equation in time is completed with many different methods. One

of the important qualities of a method is the order of accuracy. For any given method, as the time

step size (∆t) decreases the error (e) in the solution also decreases. The order of accuracy of a

method determines how much the error decreases with time step size. If the error is written as

e = A ∆tn, then the order of accuracy is n. This is often found graphically by plotting the error

versus time step size on a log-log scale, where the order of accuracy is the slope of the line. Methods

with a higher order of accuracy tend to achieve accurate solutions using larger time step sizes, but

are not guaranteed because the magnitude A can differ between methods.

The three factors that determine overall effectiveness and efficiency of a time integration method

are order of accuracy, stability (maximum allowable time step size), and the computational work

required to complete the integration. An ideal time integration method would have a high order

of accuracy, allow for large time step sizes, and require little computational time. Unfortunately,

this ideal method does not exist. Implicit methods allow for larger time step sizes but require more
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computational effort. Explicit methods require low time step sizes but have lower computational

cost. For both implicit and explicit methods, a higher order of accuracy method requires more

computational effort to complete one time step. By using a more accurate method, the same level

of accuracy can be achieved by taking fewer time steps and requiring less time overall.

One type of time integration is the single step method. Three common methods in this family

are Euler Explicit, Crank-Nicolson, and Euler Implicit (or Fully Implicit). These three methods

integrate to the next time step using only the current time level and the final time level information,

with Euler Explicit and Euler Implicit being first order accurate and Crank-Nicolson being second

order accurate. The advantage of an explicit method like Euler Explicit is the need to only know

information at the current time level. However the stability of these methods are poor and require

small time step sizes. Implicit methods, like Crank-Nicolson and Euler Implicit, have better stability

and are able to take large time steps, but they require information from the next time step, which

is unknown. This requires a more expensive solution method, particularly for a large system of

coupled equations. The overall efficiency of an explicit or implicit method depends on the problem

and method of choice.

Another type of time integration method is the family of multi-step methods, including Adams-

Bashforth methods [23] and Backwards Differentiation Formulas (BDF) [24]. These multi-step

methods are implicit methods that integrate from one time step to the next using information

from the current time step and information from at least one previous time step. The single step

method is considered the simplest form of the multi-step method, using only one step. To achieve

higher order, more time steps are included, which requires more information to be stored. Another

issue with multi-step methods is start-up, when information from past time steps is not known.

Despite these issues, multi-step methods are commonly used, and provide techniques for higher

order accuracy.

A family of integration methods called Runge-Kutta (RK) methods involve stages between time

steps. To integrate from one time step to the next, only the information at the current time step is

required. Explicit and implicit Runge-Kutta methods exist and many different variations have been
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developed to achieve a certain level of stability and accuracy. To achieve higher order accuracy,

Runge-Kutta methods require more stages, which increases the amount of computations for both

explicit and implicit methods.

Explicit Runge-Kutta methods only need information from past stages to solve each stage,

leading to simple explicit equations. To increase the order of accuracy, many more stages need to

be added.

Implicit Runge-Kutta methods need information from the current stage and future stages to

solve each stage, leading to a system of equations that must be solved simultaneously. For a large

system of coupled ODEs, solving a system of simultaneous equations is costly. Different types of

implicit RK methods are developed to be both efficient and accurate. The first type of implicit RK

method is the Fully Implicit Runge-Kutta (FIRK) method. This method requires all stages to be

solved simultaneously, with each stage dependent on all other stages. For a large system (i.e. a grid

with many grid points to be solved), the system of equations to be solved becomes very large as

the number of stages increases. FIRK methods achieve high order accuracy with few stages, with

an order of accuracy of n = 2 ∗ S − 1, where n is order of accuracy and S is the number of stages.

This means 1st order accuracy is the best possible for a one stage method, 3rd order accuracy is

the best possible for a two stage method, and 5th order accuracy is possible with only three stages.

Other forms of implicit RK methods exist, including methods such as Diagonally Implicit RK

(DIRK), Singly-Diagonal RK (SDIRK), Explicit first stage Diagonal RK (EDIRK), and Explicit

first stage Singly Diagonal RK (ESDIRK). These four methods all have the property that each

stage only requires information from previous stages and the current stage. Therefore, each stage

is solved sequentially with a smaller system of simultaneous equations at each stage.

Section 2.2 continues the discussion of different time integration methods and their application

to the solution of the incompressible Navier-Stokes equations.
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1.2.3 Flux Interpolation Schemes

For finite volume methods, the flux at the interface between two control volumes are calculated

from flow variables typically stored at the center of the control volumes. For viscous fluid flow,

both the inviscid (convective) and viscous (diffusive) fluxes are calculated. Many different methods

calculate or interpolate flux to the control volume face. Following the goal of the present research,

the most desirable flux methods yield an accurate solution with the lowest runtime. Often methods

are developed to yield a high order of accuracy and achieve the most accurate solution on the

coarsest grid. It is possible that a higher order accuracy method requires more work and takes

more runtime to achieve a certain level of accuracy than a lower order of accuracy method. To

determine the best method in the present research, a certain level of accuracy is specified (for

example an error tolerance of 1%) and the method which reaches that accuracy with the lowest

runtime is determined to be the best method.

The calculation of the flux at an interface is placed into two areas: methods based primarily on

geometry, and methods based primarily on physics. The methods based primarily on geometry use

a certain stencil, including a number of points where data is known, and fit a polynomial or some

other function to match that data. Methods based primarily on physics use known conservation

equations to develop a method to calculate fluxes based on a local approximation to the conservation

equation.

Within the geometric methods, the inviscid and viscous fluxes are often calculated using dif-

ferent methods because the physics and numerical behavior of each is different. Viscous fluxes are

relatively benign and stable due to the physics of diffusion, and central difference methods are often

used. For inviscid fluxes, stability becomes an issue, and central difference methods are unstable.

Methods for inviscid fluxes often use upwinding, common examples include first order upwinding

[5], second order upwinding [25], and QUICK schemes [26]. These methods take the velocity vector

into account and fit a polynomial through one upwind point, two upwind points, and two up-

wind and one downwind point, respectively. Other methods include the essentially non-oscillatory
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(ENO) [27] and weighted ENO (WENO) [28] schemes, which provide high-order interpolation in

both smooth regions and regions with discontinuities.

The physics based schemes take the full momentum conservation equations into account for

flux calculation. The simplest of these methods is the Exponential scheme [5], which simplifies

the momentum equations to a one-dimensional, steady convection-diffusion equation, and uses the

exact solution which is an exponential function. Two variations of this method are the Hybrid and

Power Law schemes [5], which avoid the expensive calculation of exponential values with polynomial

fits to the exponential function. These methods are stable for calculating both the inviscid and

viscous fluxes, though the schemes are too diffusive on coarse grids. An improvement to these

physics based methods is made in the Flux Corrected Method (FCM) in which the full momentum

conservation equation is used to calculate the flux on the interface instead of the one-dimensional

steady convection-diffusion equation [29].

For structured grids, all schemes discussed are relatively simple to develop; however, on un-

structured grids some methods become much more difficult. For example, the SOU and QUICK

schemes require a line through two upwind points, but on unstructured grids, where grid points do

not fall on grid lines, fitting this line becomes difficult. On unstructured grids, some of the WENO

schemes, as well as the physics based methods, follow the same procedure as the structured grid,

only requiring information from both sides of a control volume interface.

For finite element methods, the equations are discretized using the discontinuous Galerkin

method, and the accuracy is improved using higher order elements. The elements used in these

methods are functions that vary throughout the domain and have variables and their derivatives

continuous or discontinuous between elements. In contrast, most finite volume methods assume

values are constant throughout a control volume.

There are finite volume methods developed that use finite element shape functions to allow

values to vary throughout the control volume [30],[31]. The physics-based Power Law scheme is

based on this principle.
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1.2.4 Numerical Methods to Solve Linear Equation

Once the Navier-Stokes equations are discretized in space and a time integration method is

chosen, the equations become linear systems of equations to be solved using any number of tech-

niques. Directly inverting the system of equations becomes prohibitively costly for even coarse

grids. Because the systems of equations are diagonally dominant and sparse, relaxation methods

are used to iteratively solve until residuals of the equations reach a certain tolerance. Common

methods include Jacobi’s method, Gauss-Seidel, and successive over-relaxation.

Other methods use factorization to reduce the linear system to diagonal matrices, such as ILU

factorization, LU factorization, and approximate factorization. The factorization allows the system

of equations to be solved with fewer computations. The LU and approximate factorizations are

used within the IRK-SIMPLER algorithm and are discussed in detail in Appendix B.

Other methods use Newton-Krylov sub-space to approach a zero residual more efficiently. These

include Bi-Conjugate Gradient (BiCG), BiCG Stabilized (BiCGSTAB), and Generalized Minimum

RESidual (GMRES) methods. These methods involve more computations each iteration, but reduce

the residual much faster.

Another approach is multigrid, which uses relaxation methods, like Gauss-Seidel, on several

grids with different grid spacing. Multigrid methods quickly reduce error in the equation which have

a wavelength proportional to the grid spacing, but longer wavelength errors take many iterations

to be removed. Multigrid methods take advantage of this by using a set of coarse and refined grids

to reduce all wavelengths of error quickly. Multigrid methods are developed for the IRK-SIMPLER

algorithm in Appendix C, but the reduction in runtime was not significant, and other lines of

research were investigated in more detail.

Although different numerical methods used to solve linear systems of equations are an important

factor in determining the time required to solve the incompressible Navier-Stokes equations, it is not

the primary focus of this work. Some methods (LU and approximate factorization and multigrid)

are investigated and results are given in the present research, but greater reduction in runtime is

found by improving the algorithms and flux methods.
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1.3 Turbulence Modeling

For many problems, including wind turbine simulation, flow is turbulent, with eddies and fluctu-

ations at many scales in time and space. The largest eddies have the most energy and are produced

from mean flow shear. The smallest eddies have the least energy and are dissipated through viscos-

ity. The transfer from the mean shearing of flow to large eddies and then to small eddies is called

the energy cascade. This cascade is a mechanism by which the high energy, large eddies are broken

down into smaller and smaller eddies, which are eventually dissipated by viscosity.

The region in which large eddies are broken down into smaller eddies is called the inertial sub-

range. Eddies in the inertial sub-range all follow the same rate of dissipation which is their size to

the 2/3 power, known from Kolmogoroff’s law. This law dictates how eddies decrease in energy as

they become smaller.

Because turbulence occurs over such a large range of scales, the simulation of turbulent flows

have different modeling techniques for different problems. The Navier-Stokes equations include

all the physics that govern fluid flow; however, fully resolving the smallest scales of turbulence

in space and time requires very high resolution. Simulations that directly use Navier-Stokes with

highly refined grids (or using spectral methods) are called Direct Numerical Simulation (DNS).

This so called Direct Numerical Simulation is used to gain knowledge in some of the fundamentals

of turbulence, but DNS is too costly for realistic engineering applications.

To avoid fully resolving all scales of turbulence, different methods to model (but not actually

resolve) the turbulence are developed. One common method to model turbulence is the Reynolds

Averaged Navier-Stokes equations (RANS). RANS equations average the Navier-Stokes equations

in time, which introduces a new unknown called the Reynolds stress. Many different methods are

developed to model the Reynolds stress, including the one-equation Spalart-Allmaras (SA) [32]

and Baldwin-Lomax [33] models, two-equation k − ε [34] and k − ω [35] models, and six-equation

models, which solves all six terms of the Reynolds stress using the Reynolds stress transport (RST)

equation (see Durbin [36]).
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The use of RANS modeling is common in engineering applications for a relatively low cost.

However, for some applications large scale eddies have a large impact on flow, and RANS modeling

does not give sufficient results. Large Eddy Simulation (LES) is a higher fidelity model that

uses refined grids to capture the largest scale of turbulent eddies in the energetic scale, while the

smaller scales are modeled with a sub-grid model. LES filters the Navier-Stokes equations, rather

than averaging like RANS, and provides a more accurate representation of turbulence with higher

grid requirements and runtime. Despite the increased runtime, LES is becoming more prevalent in

engineering applications, such as wind turbine simulation, where large scale turbulence is important

to accurately capture. A mixture of LES and RANS modeling is possible with Detached Eddy

Simulation (DES) [37], which uses flow information to switch between LES and RANS at different

points in the domain.

Using the RANS equations and k− ε model is popular for engineering applications, and is used

to simulate turbulent flows in present research. One issue with k− ε, and similar RANS models, is

the near wall boundary conditions. Conditions on the k and ε terms can be specified, but require

refined grids near the wall for accuracy. Alternatively, wall functions can be used to represent the

physics of the turbulent flow near the wall, without the need for highly refined grids. Wall models

use the universal law of the wall to set values of k and ε near the wall. Wall functions work best

when grids are not too close or far from the wall, making grid generation difficult for turbulent

problems when the turbulent boundary layer is not known a priori.

Chapter 5 develops k − ε models for unstructured grids and includes the FCM scheme into the

turbulence calculation.

1.4 Wind Turbine Modeling

Numerical simulation of wind farms is a complex and costly undertaking, largely due to the

significant difference in length scales from the thickness of the boundary layer on turbine blades

to the overall size of a wind farm. The physical geometry of the blades can be modeled in the

computational domain as moving bodies. Resolving the flow around the moving blades requires
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a highly refined grid near the blades to accurately capture the boundary layer profile. The blade

grid must move as the turbine rotates, and there must be some way to connect the blade grid to

the rest of the domain that is not rotating. This can be done with overset grids [38] or with a grid

reconnected to the outer domain each time step [39]. A highly refined grid required to fully resolve

the blade flow is costly and requires significant computing power and time.

The simulation of wind farms is often simplified using rotor momentum source modeling [40]

or similar actuator disk and actuator line methods. These methods use known airfoil data for

each blade section to assemble a model for forces acting on the blade. Airfoil data is commonly

tabulated for different angles of attach, Reynolds numbers, Mach numbers, and other parameters.

By assuming that blade forces have little impact from flow along the blade span, known two-

dimensional data is used to find the force on a blade section, and the force over the blade is

integrated to find thrust, torque, and other forces. These forces are applied to the flow by adding

them to the momentum equation sources at the location of each blade section. The momentum

source method has been used for vertical axis wind turbines [40], helicopters [41],[42],[43], and

horizontal axis wind turbines [44]. This method greatly reduces the grid points required to achieve

an accurate solution.

Using the momentum source method, as rotor blades pass through grid cells, the blade forces

must be transferred to the flow. Several methods are developed to accomplish this. One method

is to simply add the force of each blade section into the grid cell being intersected by that blade

section [40]. Another method is to use a Gaussian distribution to spread the rotor source onto the

domain in a smooth manner [45].

One issue with momentum source modeling is the assumption that flow over the blades is

two-dimensional, however, this is not a good assumption near the root and tip of the blades and

requires corrections to improve results. One option is to use Prandtl’s tip correction. Rajagopalan

[40] developed a tip correction that uses the local pressure gradient and modifies the blade section

angle of attack such that the lift at the tip goes to zero. Jha [46] developed a method that uses an
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elliptic distribution along the span of the blade, which reduces the force at the tip to zero. Another

method uses a non-uniform Gaussian distribution that varies in width along the blade [47].

The methods previously mentioned all introduce the rotor source for a given time step with the

blade fixed at one location. However, given that the rotor blades are moving within the time step,

present research examines the effect of using a new time accurate, unsteady rotor source location

to improve the unsteady solution and reduce the runtime required. This new technique uses the

time integration method to determine the blade location within the time step.

The momentum source method is used in the present research to yield accurate values of torque

and power on horizontal axis wind turbines. Chapter 6 covers the detail of modeling the turbine

blades and results.

1.5 Current Work

Current research examines different methods where the accurate solution of unsteady incom-

pressible flows is achieved faster, with a focus on improving the algorithms and methods to solve the

equations. A family of pressure-based algorithms using Runge-Kutta is developed, validated, and

tested for efficiency and accuracy. Different flux schemes are examined to determine which methods

yield accurate results economically. A new flux scheme for unstructured grids is also presented and

works efficiently with a higher order of accuracy. The methods are tested on steady and unsteady

cases, as well as cases with turbulence and wind turbine modeling.
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CHAPTER 2. ALGORITHMS AND TIME INTEGRATION METHODS

2.1 Governing Equations

To demonstrate the methods required to solve these equations, a two-dimensional structured

Cartesian grid is used. The two-dimensional unsteady incompressible flow equations in Cartesian

coordinates are written as follows.

∂(ρu)

∂x
+
∂(ρv)

∂y
= 0 (2.1)

∂(ρu)

∂t
+
∂(ρuu)

∂x
+
∂(ρvu)

∂y
= −∂p

∂x
+

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+ Su (2.2)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρvv)

∂y
= −∂p

∂y
+

∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
+ Sv , (2.3)

where (x, y) are the Cartesian coordinates, (u, v) are the x and y velocity components, and (Su, Sv)

are the x and y source term components. The control volume used to integrate these equations is

seen in Fig. 2.1.

W E

N

S

n

w

s

eP

Control
Volume

Figure 2.1: Control volume for two-dimensional Cartesian system.

To avoid pressure oscillations, as discussed in Patankar [5], pressure is located at the cell center

(P ), while velocity components are stored at the cell faces (u at faces e and w, v at faces n and s).

Using this arrangement (sometimes referred to as a staggered grid), the continuity equation (Eq.
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2.1) is integrated over the control volume and leads to the following discrete equation.

Fe − Fw + Fn − Fs = 0 , (2.4)

where

Fe = (ρu)e∆y Fw = (ρu)w∆y (2.5)

Fn = (ρv)n∆x Fs = (ρv)s∆x . (2.6)

Flux across control volume faces (F ) is calculated using the face centered velocity components.

The momentum equations (Eqs. 2.2 and 2.3) are rewritten as

∂(ρu)

∂t
+
∂Jux
∂x

+
∂Juy
∂y

= −∂p
∂x

+ Su (2.7)

∂(ρv)

∂t
+
∂Jvx
∂x

+
∂Jvy
∂y

= −∂p
∂y

+ Sv , (2.8)

where J is the total (convective plus diffusive) flux in the x and y directions for the u and v

momentum equations.

Jux = ρuu− µ∂u
∂x

Juy = ρvu− µ∂u
∂y

(2.9)

Jvx = ρuv − µ∂v
∂x

Jvy = ρvv − µ∂v
∂y

(2.10)

The integration of the momentum equations over the control volume leads to the semi-discrete

equations

d(ρu)P
dt

∆∀+ (Ju−e − Ju−w) + (Ju−n − Ju−s) = − (pe − pw) ∆y + Su∆∀ (2.11)

d(ρv)P
dt

∆∀+ (Jv−e − Jv−w) + (Jv−n − Jv−s) = − (pn − ps) ∆x+ Sv∆∀ , (2.12)

where ∆∀ = ∆x∆y is the volume of the control volume of interest, and the flux values (Ju,v−e,w,n,s)

are integrated over the faces and contain the face area. Here the pressure derivative is calculated

using a central difference, ( dpdx)P = (pe − pw)/∆x and (dpdy )P = (pn − ps)/∆y.

The method used to evaluate the fluxes J at the control volume faces becomes an important

factor for the stability and accuracy of the system of equations. Different methods to evaluate this
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flux are examined in Sec. 4. For now the Power Law scheme of Patankar [5] is used.

Jφ−e = aE(φP − φE) + FeφP Jφ−w = aW (φW − φP ) + FwφP (2.13)

Jφ−n = aN (φP − φN ) + FnφP Jφ−s = aS(φS − φP ) + FsφP (2.14)

Here φ represents either u or v, depending on the momentum equation component of interest. The

coefficients a are found by

aE = DeA(|Pe|) + J−Fe, 0K aW = DwA(|Pw|) + JFw, 0K (2.15)

aN = DnA(|Pn|) + J−Fn, 0K aS = DsA(|Ps|) + JFs0K , (2.16)

where F is the convective flux defined in Eqs. 2.5 and 2.6. The operator Ja, bK returns the maximum

value of a and b. The D values are diffusive coefficients defined by

De =
µe∆y

δxe
Dw =

µw∆y

δxw
(2.17)

Dn =
µn∆x

δyn
Ds =

µs∆x

δys
, (2.18)

where δx and δy represent the distance between two cell centers (i.e. δxe = xE − xP and δys =

yP − yS). The Peclet number P = F/D is a non-dimensional number that represents the local grid

Reynolds number. The function A(|P |) takes different values depending on the scheme used. For

Power Law,

A(|P |) = J0, (1− 0.1|P |)5K . (2.19)

Substituting Eqs. 2.13 and 2.14 into Eqs. 2.11 and 2.12, using the appropriate values of u and

v in place of φ, leads to the following representations of the momentum equations.

d(ρu)P
dt

∆∀+ (au−E + au−W + au−N + au−S)uP − au−E uE − au−W uW − au−N uN − au−S uS

+ (Fe − Fw + Fn − Fs)uP = − (pe − pw) ∆y + Su∆∀ (2.20)

d(ρv)P
dt

∆∀+ (av−E + av−W + av−N + av−S) vP − av−E vE − av−W vW − av−N vN − av−S vS

+ (Fe − Fw + Fn − Fs)vP = − (pn − ps) ∆x+ Sv∆∀ (2.21)
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By recognizing that (Fe − Fw + Fn − Fs) = 0 from continuity (Eq. 2.4) and defining

au−P = au−E + au−W + au−N + au−S bu = (pw − pe)∆y + Su∆∀ (2.22)

av−P = av−E + av−W + av−N + av−S bv = (ps − pn)∆x+ Sv∆∀ , (2.23)

the momentum equations are cast into the final semi-discrete form

duP
dt

ρ∆∀ = au−E uE + au−W uW + au−N uN + au−S uS + bu − au−P uP

=
∑

au−nb unb + bu − au−P uP (2.24)

dvP
dt

ρ∆∀ = av−E vE + av−W vW + av−N vN + av−S vS + bv − av−P vP

=
∑

av−nb vnb + bv − av−P vP , (2.25)

where the summation is over all the neighboring nodes (E,W,N, S) that share a face with the main

control volume P . Equations 2.4, 2.24, and 2.25 represent the semi-discrete equations that must

be satisfied to obtain a solution for unsteady incompressible flows. Before going into the different

algorithms used to solve these equations, methods used to integrate the momentum equations in

time are examined.

2.2 Time Integration Methods

When solving the unsteady incompressible Navier-Stokes equations, an important aspect is the

integration in time, or the method by which the solution is marched forward in time. These methods

are classified as explicit or implicit. Explicit methods only require information that is already known

to advance while implicit methods rely on information that is not yet known, resulting in a system

of equations that require more computation time to solve. The advantage of implicit methods is

the ability to be stable and yield accurate results for large time step sizes. Explicit methods, on

the other hand, result in poor stability, and often require small time step sizes to converge to an

accurate solution.

The semi-discrete equations (discretized in space) have the following form.

dφ

dt
= F (φ, t) (2.26)
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There are many different methods to integrate this type of equation in time. Some of the different

methods are discussed in this section.

2.2.1 Single Step Methods

Single step methods integrate from one time level to the next using only one step. Three

methods that fall into this category are the Euler Explicit (or forward Euler), Crank-Nicolson, and

the Euler Implicit (or backward Euler or Fully Implicit) methods.

The Euler Explicit method integrates Eq. 2.26 from time tn to time tn+1 = tn + ∆t by

φn+1 = φn + ∆tF (φn, tn) , (2.27)

where the superscript of φ represents the time level (i.e. φn = φ(tn)). The Euler Explicit method

is very simple to evaluate, given values of tn and un and the function F , the update only requires

the evaluation of the function F .

The Euler Implicit method integrates Eq. 2.26 by

φn+1 = φn + ∆tF (φn+1, tn+1) . (2.28)

The only difference between Euler Explicit and Euler Implicit is the values input into the function

F . For Euler Implicit, the value of φn+1 is unknown and present on both the left hand side and

right hand side of the equation. Solving this implicit equation for a scalar problem is still relatively

simple: substitute φn+1 into the function F , linearize the function F if it is non-linear in φ, and

solve for φn+1. For a coupled set of functions, solving the implicit equation requires the solution of

a linear system of equations, which becomes more costly as the system of equations becomes larger.

The final single step method of interest is the Crank-Nicolson method, which is equivalent to

the trapezoidal rule, and is the average of Euler Explicit and Euler Implicit.

φn+1 = φn +
1

2

[
∆tF (φn, tn)∆tF (φn+1, tn+1)

]
(2.29)

The Crank-Nicolson method requires a similar solution process as the Euler Implicit, including the

solution of a linear system of equations for a coupled set of functions. Both the Euler Explicit
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and Euler Implicit methods are first order accurate in time, while Crank-Nicolson is second order

accurate in time. All three of these methods are written together as

φn+1 = φn + αt [∆tF (φn, tn)] + (1− αt)
[
∆tF (φn+1, tn+1)

]
, (2.30)

where αt equals 1.0 for Euler Implicit, 0.5 for Crank-Nicolson, and 0.0 for Euler Explicit.

2.2.2 Runge-Kutta Methods

Runge-Kutta (RK) methods use several steps or stages between time level n and n + 1 to

integrate Eq. 2.26. RK methods involve a weighted average of the function F (u, t) evaluated at

the different stages. The generic form for any RK integration of Eq. 2.26 from time level n to time

level n+ 1 has the form

φn+1 = φn + ∆t

S∑
s=1

βsF
(
φs, t

n + γs∆t
)
, (2.31)

where S is the number of RK stages and φs are the stages values. The βs coefficient is the weight

of the function F for a given stage s. The coefficient γs represents a fraction of the time step,

where the time for stage s is ts = tn + γs∆t. To evaluate Eq. 2.31, the values of φs at each stage

(1 ≤ s ≤ S) are required. The equation for each stage has the form

φs = φn + ∆t
S∑
l=1

αs,lF
(
φl, t

n + γl∆t
)

for 1 ≤ s ≤ S . (2.32)

For each stage s there are a set of weights αs,l, where the index l is a free index. There are a set

of conditions on β and γ.
S∑
s=1

βs = 1 (2.33)

γs =
S∑
l=1

αs,l for 1 ≤ s ≤ S (2.34)

The first condition (Eq. 2.33) requires the sum of the weights to equal 1. The second condition

(Eq. 2.34) requires that at each stage, the sum of the stage weights equals the time fraction for

that stage, γs. The values of the coefficients α, β, and γ determine the specific RK method and
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are often visualized in a Butcher tableau, as shown in Table 2.1. Many RK methods are developed

with coefficients set to satisfy accuracy and stability conditions [24].

An important point to observe is the function F can include source terms that are functions of

time. The way that source terms are evaluated has a large impact on the accuracy of the integration.

Appendix A shows source terms should be evaluated at each stage with the given stage time (ts)

to yield the most accurate results.

Table 2.1: Form of the Butcher tableau.

γ1 α1,1 α1,2 · · · α1,l · · · α1,S

γ2 α2,1 α2,2 · · · α2,l · · · α2,S
...

...
...

. . .
...

. . .
...

γs αs,1 αs,2 · · · αs,l · · · αs,S
...

...
...

. . .
...

. . .
...

γS αS,1 αS,2 · · · αS,l · · · αS,S
β1 β2 · · · βl · · · βS

2.2.2.1 Fully Implicit Runge-Kutta

Looking again at Eq. 2.32, one notices that to solve any stage value (φs), all other stage values

must also be known and substituted into the function for F . This is the most general form of

RK, without assuming or forcing any coefficient to be zero, and is called Fully Implicit Runge-

Kutta (FIRK). FIRK methods have every stage coupled together, so all stages must be solved

simultaneously. For a coupled set of F functions with each φ in the set related to all other φ values

in the set, FIRK integration requires a system of equations be solved with a dimension (N ∗ S)2,

where N is the number of φ values in the set (for our case of incompressible flow N is the number

of grid points in the domain). The advantages of FIRK methods are the stability and high order

accuracy with only a few stages. FIRK methods based on Gauss quadrature are able to achieve an

order of accuracy of p = 2 ∗ S [24]. Despite the advantages of FIRK methods, the solution of the
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large system often requires so much work that the method is unreasonable (although with recent

advancements in numerical methods, research shows that FIRK methods can be competitive [48]).

To reduce the complexity of solving FIRK methods, several variations of RK are developed that

reduce the number of non-zero coefficients in the Butcher Tableau. A RK method is implicit if it

has at least one non-zero αs,l on or above the diagonal. Put another way: for any 1 ≤ s ≤ S, if

αs,l 6= 0 for any l ≥ s, then the RK method is implicit. If this is not true, (αs,l = 0 for all l ≥ s),

then the RK method is explicit.

2.2.2.2 Explicit Runge-Kutta

A generic explicit Runge-Kutta (ERK) method has the stage values of the form

φs = φn + ∆t
s−1∑
l=1

αs,lF
(
φl, t

n + γl∆t
)

for 1 ≤ s ≤ S . (2.35)

The stage value for the first stage simplifies to φ1 = φn, and Eq. 2.31 is used to update to the

next time level. The coefficients αl,s are only non-zero for l < s. Note the only difference between

Eq. 2.35 and Eq. 2.32 is the index on the summation. ERK methods only rely on previous stages

(previously known info), but implicit Runge-Kutta (IRK) methods rely on at least one stage value

not yet known (info from past, present, and future).

Integrating with ERK methods results in each stage becoming an algebraic equation that re-

quires little computational effort, evaluation of the function F with known values. The disadvan-

tages of ERK methods are poor stability (requiring low time step sizes) and the high number of

stages required to achieve higher order of accuracy. It is possible to develop an ERK method with

an order of accuracy equal to the number of stages (p = S) up to fourth order (p = 4), but to get

an ERK method with p ≥ 5, then S > p [24].

2.2.2.3 Low-Storage Explicit Runge-Kutta

A variation on the ERK method is the low-storage ERK (ERK-LS) method, in which each

stage value is calculated with only the last stage value [49]. For ERK-LS methods, the coefficients
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simplify to αs,l = 0 for all l 6= (s− 1). The simplified equation to find each stage value is as follows

φs = φn + αs,s−1∆tF
(
φs−1, t

n + γs−1∆t
)

for 1 ≤ s ≤ S , (2.36)

and the update to time level n+ 1 is

φn+1 = φn + βS∆tF
(
φS , t

n + γS∆t
)
. (2.37)

The coefficients αl,s are only non-zero for l = (s − 1). The ERK-LS methods only require storage

of φn and φs−1 to find φs, reducing the memory required compared to generic ERK methods. The

simplified equations also reduce the number of computations required to update each value. The

commonly used RK4 method falls into this category.

2.2.2.4 Diagonally Implicit Runge-Kutta

The FIRK methods are known for high accuracy and stability, but are costly for large systems.

ERK methods require less computation to update each stage value, but suffer from poor stability

and require a large number of stages to achieve a high order of accuracy. A variation of IRK

methods, known as Diagonally Implicit Runge-Kutta (DIRK), maintains some of the advantages

of FIRK methods (namely high stability), while allowing each stage to be solved sequentially with

a reduced computational cost. The stage equations for DIRK are

φs = φn + ∆t
s∑
l=1

αs,lF
(
φl, t

n + γl∆t
)

for 1 ≤ s ≤ S . (2.38)

Equation 2.31 is used to update to the next time level. The coefficients αl,s are non-zero for l ≤ s

and zero for l > s. The difference in the stage equation is on the summation, only going from l = 1

to l = s. This means that to solve each stage s, the stages values for all past stages 1 ≤ l ≤ s− 1

and the current stage s must be known, but future stages are not required.

Using DIRK methods to solve a set of size N requires a linear system of equations of size N2 be

solved at each stage (1 ≤ s ≤ S), or a total of S linear systems of size N2. Solving several smaller

systems of equations is often more efficient than solving one large system of equations, allowing

DIRK methods to be more efficient than FIRK methods at integrating over a time step.
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The diagonal coefficient, αs,s, in DIRK methods is sometimes taken to be a constant (αs,s = k for

all 1 ≤ s ≤ S) [24],[50]. Some researchers call these methods Singly Diagonal Implicit Runge-Kutta

(SDIRK), while others simply call them DIRK methods. One advantage of the singly diagonal term

is that if the function F is either linear in φ or is linearized once for all stages, then the coefficient

matrix formed to solve the linear system of equations does not change from stage to stage. This

allows for factorization to improve the efficiency of solving the system of equations. In present

research these are called SDIRK methods, and they have stage values

φs = φn + ∆tkF
(
φs, t

n + γs∆t
)

+ ∆t
s−1∑
l=1

αs,lF
(
φl, t

n + γl∆t
)

for 1 ≤ s ≤ S . (2.39)

The order of accuracy of DIRK methods is not as good as the FIRK methods, which can achieve

p = 2 ∗ s, but DIRK methods can achieve p = s + 1 for order of accuracy up to p = 4 with s = 3

[50].

2.2.2.5 Explicit first stage, Diagonally Implicit Runge-Kutta

Another variation of IRK similar to DIRK methods are Explicit first stage, Diagonally Implicit

Runge-Kutta (EDIRK) methods [51].These methods are diagonally implicit methods with the first

stage explicit, requiring the solution of S − 1 implicit stages and reducing the computational cost.

The stage values for EDIRK methods are

φ1 = φn (2.40)

φs = φn + ∆t
s∑
l=1

αs,lF
(
φl, t

n + γl∆t
)

for 2 ≤ s ≤ S . (2.41)

Similar to the SDIRK methods, there are Explicit first stage, Singly Diagonal Implicit Runge-

Kutta (ESDIRK) methods in which EDIRK methods have a singly diagonal term αs,s = k. Like

the SDIRK methods, this allows for the possibility of factorizing the coefficient matrix and reducing

the computational cost of solving all stages. The stage values for ESDIRK methods are

φ1 = φn (2.42)

φs = φn + ∆tkF
(
φs, t

n + γs∆t
)

+ ∆t

s−1∑
l=1

αs,lF
(
φl, t

n + γl∆t
)

for 2 ≤ s ≤ S . (2.43)
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2.2.2.6 Stiffly Accurate Runge-Kutta Methods

A Runge-Kutta method is stiffly accurate if the last stage value is equal to the value at time level

(n+ 1), or αS,l = βl for all 1 ≤ l ≤ S [50]. These methods are particularly useful for DAE systems

(such as the incompressible Navier-Stokes equations). RK methods that are not stiffly accurate

tend to suffer order reduction (in the case of incompressible flow, order reduction in pressure)

[51].When the stiffly accurate condition is paired with either ERK or EDIRK/ESDIRK, then the

first-same-as-last (FSAL) property is met [24].The FSAL property acts as if the RK method is one

stage less than it actually is, and is often more efficient than methods without the FSAL property

[24].

The differences in RK methods are be seen qualitatively in the representations of the Butcher

tableau for these RK methods in Fig. 2.2.

γ α

β
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γ 0
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Figure 2.2: Qualitative representation of Butcher tableaus for Runge-Kutta methods.

2.3 Algorithms

With methods to integrate the momentum and continuity equations available, the process of

solving the coupled equations is now discussed. Recalling the set of equations for a two-dimensional
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Cartesian grid have the following form.

0 = (ρu∆y)e − (ρu∆y)w + (ρv∆x)n − (ρv∆x)s (2.44)

duP
dt

ρ∆∀ =
∑

au−nb unb + bu − au−P uP (2.45)

dvP
dt

ρ∆∀ =
∑

av−nb vnb + bv − av−P vP (2.46)

Equations in this form are called differential algebraic equations (DAEs) of type 2 [1] because there

is an algebraic equation as well as differential equations coupled together. DAEs of type 2 are often

written as

d~V

dt
= f(~V , p) (2.47)

0 = g(~V ) , (2.48)

where the differential equations are the momentum equations with pressure on the right-hand-side,

and the algebraic equation is continuity.

An important driving force for fluid flow is pressure; however, it is only present in the source

terms of the momentum equations (bu and bv). There are many algorithms discussed in Section 1.2.1

that have been developed to solve these equations. The present research focuses on pressure-based

methods, and in particular, starts by examining the SIMPLE family of methods.

2.3.1 SIMPLE

The SIMPLE (Semi-IMplicit Pressure Linked Equations) algorithm of Patankar [5] was de-

veloped by creating a pressure correction equation that allowed both pressure and velocity to be

corrected to satisfy continuity. The pressure correction equation starts with the fully discrete mo-

mentum equation integrated in time with an implicit method. Eqs. 2.45 and 2.46 are integrated

from time tn to tn+1 using Crank-Nicolson (αt = 0.5) or Fully Implicit (αt = 1.0) for all terms
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except pressure, which, by choice, is always integrated with the Fully Implicit scheme.

un+1
P = unP + αt

∆t

ρ∆∀

(∑
au−nb unb + Su∆∀ − au−P uP

)n+1
(2.49)

+(1− αt)
∆t

ρ∆∀

(∑
au−nb unb + Su∆∀ − au−P uP

)n
+

∆t

ρ∆∀
(pw − pe)n+1 ∆y

vn+1
P = vnP + αt

∆t

ρ∆∀

(∑
av−nb vnb + Sv∆∀ − av−P vP

)n+1
(2.50)

+(1− αt)
∆t

ρ∆∀

(∑
av−nb vnb + Sv∆∀ − av−P vP

)n
+

∆t

ρ∆∀
(ps − pn)n+1 ∆x

Rearranging leads to

a′u−P u
n+1
P =

∑
a′u−nb u

n+1
nb + b′u + (pw − pe)n+1 ∆y (2.51)

a′v−P v
n+1
P =

∑
a′v−nb v

n+1
nb + b′v + (ps − pn)n+1 ∆x , (2.52)

with

a′u−P = αt a
n+1
u−P +

ρ∆∀
∆t

(2.53)

a′u−nb = αt a
n+1
u−nb (2.54)

b′u = (1− αt)
(∑

au−nb unb + Su∆∀ − au−P uP
)n

+
ρ∆∀
∆t

unP (2.55)

a′v−P = αt a
n+1
v−P +

ρ∆∀
∆t

(2.56)

a′v−nb = αt a
n+1
v−nb (2.57)

b′v = (1− αt)
(∑

av−nb vnb + Sv∆∀ − av−P vP
)n

+
ρ∆∀
∆t

vnP . (2.58)

Equations 2.51 and 2.52 are the fully discrete momentum equations that are solved to find the

updated velocity components at time tn+1. If the pressure field is known, this equation is solved

using any number of linear equation solvers (i.e. Gauss-Seidel). However, the pressure is not

typically known when solving fluid flow, so a guessed value for pressure must be used to solve the

momentum equations.

2.3.1.1 Pressure Correction Equation

The pressure correction equation was derived to have a mechanism to correct pressure after

updating the velocity field. Recall for a staggered grid, the pressure is located at the cell center (P ),
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and velocity components are at the cell faces (e, w, n, s). For convenience of notation, momentum

equations are written with the P taken as the location of the velocity component. If we instead

write the momentum equations centered at face e for u and face n for v, we get

au−e ue =
∑

au−nb unb + bu + (pP − pE) ∆y (2.59)

av−n vn =
∑

av−nb vnb + bv + (pP − pN ) ∆x , (2.60)

noting the change in pressure term subscripts. For ease of notation, the primes have been removed

from the coefficients and source term and the superscript n+ 1 is dropped. All values are assumed

to be from the n+ 1 time level unless otherwise noted.

Following Patankar’s procedure for pressure correction, if a guessed pressure field, p∗, is used

to solve the momentum equations, an imperfect velocity field, u∗ and v∗, are found.

au−e u
∗
e =

∑
au−nb u

∗
nb + bu + (p∗P − p∗E) ∆y (2.61)

av−n v
∗
n =

∑
av−nb v

∗
nb + bv + (p∗P − p∗N ) ∆x (2.62)

To improve the pressure field, a pressure correction, p′, is defined such that the corrected

pressure is defined by

p = p∗ + p′ . (2.63)

Correcting the pressure results in a corrected velocity field, denoted as

u = u∗ + u′ v = v∗ + v′ . (2.64)

Subtracting Eq. 2.61 from Eq. 2.59, as well as Subtracting Eq. 2.62 from Eq. 2.60, yields the

following.

au−e u
′
e =

∑
au−nb u

′
nb +

(
p′P − p′E

)
∆y (2.65)

av−n v
′
n =

∑
av−nb v

′
nb +

(
p′P − p′N

)
∆x (2.66)
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If the approximate values are correct, then the values of p′, u′, and v′ are zero. Patankar drops the

terms
∑
au−nb u

′
nb and

∑
av−nb v

′
nb, leading to the following equations.

au−e u
′
e =

(
p′P − p′E

)
∆y (2.67)

av−n v
′
n =

(
p′P − p′N

)
∆x (2.68)

Rearranging leads to

u′e = du
(
p′P − p′E

)
v′n = dv

(
p′P − p′N

)
, (2.69)

where

du =
∆y

a′u−e
dv =

∆x

a′v−e
. (2.70)

Substituting Eq. 2.69 into Eq. 2.64 leads to

ue = u∗e + du
(
p′P − p′E

)
vn = v∗n + dv

(
p′P − p′N

)
. (2.71)

Equation 2.71 is the equation used to correct velocity once the pressure correction is known. To

find the pressure correction, Eq. 2.71 is substituted into the continuity equation (Eq. 2.44) at all

control volume faces.

ap−P p
′
P = ap−E p

′
E + ap−W p′W + ap−N p

′
N + ap−S p

′
S + bp′ , (2.72)

where

ap−E = (ρ du)e ∆y ap−W = (ρ du)w ∆y (2.73)

ap−N = (ρ dv)n ∆x ap−S = (ρ dv)s ∆x (2.74)

ap−P = ap−E + ap−W + ap−N + ap−S (2.75)

b′p = (ρu∗∆y)e − (ρu∗∆y)w + (ρv∗∆x)n − (ρv∗∆x)s . (2.76)

2.3.1.2 Relaxation

The SIMPLE algorithm converges to steady state solutions using sub-iterations alongside re-

laxation of the momentum equation, and pressure correction is used to correct both the pressure
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and velocity. For momentum equations, relaxation is included by modifying the coefficients in Eqs.

2.53-2.58, with a relaxation parameter αu and αv for the x and y momentum equations respectively.

a′u−P =
a′u−P
αu

b′u = b′u + (1− αu)
a′u−P
αu

u∗P (2.77)

a′v−P =
a′v−P
αv

b′v = b′v + (1− αv)
a′v−P
αv

v∗P , (2.78)

where u∗P and v∗P are the last sub-iteration values. For the pressure correction equation, relaxation

is added by limiting the correction to pressure.

p = p∗ + αpp
′ (2.79)

Patankar quotes values of αu = αv = 0.5 and αp = 0.8 work for many problems, but some

cases require lower values. These relaxation parameters heavily influence the convergence rate and

runtime of the algorithm.

For unsteady problems, the solution is converged using this relaxation and sub-iterations each

time step.

2.3.1.3 Solution Procedure

The solution procedure for the SIMPLE algorithm is as follows:

1. Start with an initial velocity field and a guess for an initial pressure field.

2. Calculate the momentum equation coefficients (Eqs. 2.53-2.58) using the most up to date

information (including relaxation).

3. Solve the momentum equations (Eqs. 2.61 and 2.62) for an updated velocity field.

4. Calculate the pressure correction coefficients (Eqs. 2.73-2.76) using the updated velocity field.

5. Solve the pressure correction equation (Eq. 2.72).

6. Correct pressure using Eq. 2.63 (including relaxation).

7. Correct velocity field using Eq. 2.64.
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8. Return to step 2, treating the updated pressure field as the new guessed value and iterate

until convergence.

9. Advance in time (t = t+ ∆t) and go to step 2, using the converged pressure field as the guess

for the next time step.

This procedure is shown visually in Fig. 2.3.

Start with initial velocity
and guessed pressure fields

Calculate momentum coefficients using previous velocity and relaxation

Solve the momentum equations (Eqs. 2.61 & 2.62)

Calculate coefficients of the pressure
correction equation (Eqs. 2.73-2.76)

Solve the pressure correction equation (Eq. 2.72)

Correct the pressure field (Eq. 2.63) using relaxation

Correct the velocity field (Eqs. 2.64)

Converged?

Yes

No

Advance to the next
time step (t = t + ∆t)

Figure 2.3: Diagram of the SIMPLE algorithm.
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2.3.2 SIMPLER

The SIMPLE algorithm has preformed well for many problems, but the SIMPLE Revised (SIM-

PLER) algorithm is developed to improve the convergence rate and reduce runtime. The main moti-

vation leading to the development of SIMPLER is the approximation made in deriving the pressure

correction equation, which leads to the requirement of relaxation in the pressure correction.

2.3.2.1 Pressure Equation

The SIMPLER algorithm starts by deriving an equation to solve pressure from a given velocity

field. Writing the momentum equations (Eqs. 2.59 and 2.60) slightly differently

un+1
e = û+ du (pP − pE)n+1 (2.80)

vn+1
n = v̂ + dv (pP − pN )n+1 , (2.81)

where the pseudo-velocities (û and v̂) are defined by

û =

∑
a′u−nb u

n+1
nb + b′u

a′u−e
v̂ =

∑
a′v−nb v

n+1
nb + b′v

a′v−e
. (2.82)

Substituting Eqs. 2.80 and 2.81 into the continuity equation (Eq. 2.44) at all control volume faces

leads to the pressure equation.

ap−P pP = ap−E pE + ap−W pW + ap−N pN + ap−S pS + bp , (2.83)

where

ap−E = (ρ du)e ∆y ap−W = (ρ du)w ∆y (2.84)

ap−N = (ρ dv)n ∆x ap−S = (ρ dv)s ∆x (2.85)

ap−P = ap−E + ap−W + ap−N + ap−S (2.86)

bp = (ρû∆y)e − (ρû∆y)w + (ρv̂∆x)n − (ρv̂∆x)s . (2.87)

The coefficients (a values) for the pressure and pressure correction equations are identical, but

the source term (b) for the pressure equation uses pseudo-velocities where the pressure correction

equation uses approximate velocities values.
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2.3.2.2 Solution Procedure

The solution procedure for the SIMPLER algorithm is as follows:

1. Start with an initial velocity field.

2. Calculate the momentum equation coefficients (Eqs. 2.53-2.58) using previous velocity (in-

cluding relaxation).

3. Calculate the pressure coefficients (Eqs. 2.84-2.87).

4. Solve the pressure equation (Eq. 2.83).

5. Solve the momentum equations (Eqs. 2.61 and 2.62) using the calculated pressure field.

6. Calculate the pressure correction source (Eq. 2.76) using the updated velocity field.

7. Solve the pressure correction equation (Eq. 2.72).

8. Correct velocity field using Eq. 2.64, but do not correct the pressure field.

9. Return to step 2 and iterate until convergence.

10. Advance in time t = t+ ∆t and go to step 2.

This procedure is shown visually in Fig. 2.4.

The SIMPLER algorithm requires more computations because the additional pressure equation

is solved, but the convergence rate is improved and solutions are usually found with less runtime.

Two important factors are the removal of a pressure correction that requires relaxation and the

fact that a guessed pressure field is not required.

For a more thorough discussion of the SIMPLE and SIMPLER algorithms refer to Patankar[5].



www.manaraa.com

34

Start with an initial velocity field

Calculate momentum coefficients using previous velocity and relaxation

Calculate coefficients of the pressure equation (Eqs. 2.84-2.87)

Solve the pressure equation (Eq. 2.83)

Solve the momentum equations (Eqs. 2.61 & 2.62)

Calculate the pressure correction source
term (Eq. 2.76) using the updated velocity

Solve the pressure correction equation (Eq. 2.72)

Correct the velocity field (Eqs. 2.64)

Converged?

Yes

No

Advance to the next
time step (t = t + ∆t)

Figure 2.4: Diagram of the SIMPLER algorithm.
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2.3.3 RK-SIMPLER

The RK-SIMPLER algorithm for the Cartesian system is presented by Purohit [52] and is

further discussed by Rajagopalan and Lestari [6]. The three main motivating factors for developing

RK-SIMPLER are to use explicit methods to integrate the momentum equations, remove the need

for relaxation and sub-iterations, and remove the approximate pressure correction equation. The

original algorithm developed by Purohit is called Variation A, and a modified algorithm developed

in the present work is called Variation B.

2.3.3.1 Variation A

The RK-SIMPLER algorithm Variation A, denoted as RK-SIMPLER(A), uses the pressure

equation and the semi-discrete form of the momentum equations to update the solution field each

time step. The initial velocity field is assumed to be known, and the pressure equation is solved

to extract the pressure field. With the pressure now known, the momentum equations form first

order linear ODEs in time that are solved with pressure as a source term.

The semi-discrete form of the momentum equations in Eqs. 2.45 and 2.46 are both of the form

dφ

dt
= F (φ, t) , (2.88)

and are integrated with Runge-Kutta methods. For the x and y momentum equations, the ODEs

are

duP
dt

= Fu(u, t) =
Ru
ρ∆∀

(2.89)

dvP
dt

= Fv(v, t) =
Rv
ρ∆∀

. (2.90)

Ru and Rv are defined as

Ru =
∑

au−nb unb + bu − au−P uP (2.91)

Rv =
∑

av−nb vnb + bv − av−P vP , (2.92)

where the coefficients and sources are the unmodified values defined in Eqs. 2.16, 2.15, 2.22, and

2.23.
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To form a pressure equation, momentum equations are integrated in time with Crank-Nicolson

or Fully Implicit discretization, as shown in Eqs. 2.51-2.58. Purohit originally used Fully Implicit,

while Lestari [53] used a Crank-Nicolson integration for testing the RK-SIMPLER algorithm on

unstructured grids. Crank-Nicolson is second order accurate and Lestari found it works well with

RK-SIMPLER, so it is used in the present work. The pressure equation requires evaluating û and

v̂ in Eq. 2.82, however, the values of un+1
nb and vn+1

nb are not known at the beginning of the time

step. To remedy this, the known values of unnb and vnnb are used instead.

û =

∑
a′u−nbu

n
nb + b′u

a′u−P
v̂ =

∑
a′v−nbv

n
nb + b′v

a′v−P
(2.93)

The momentum coefficients are also known at time level n, and are used in the above formulation of

the pseudo-velocities instead of coefficients from time level n+ 1. By making these simplifications,

the pressure and momentum equations become decoupled. The pressure equation is solved first

from the known velocity field, then the momentum equations are updated using the known velocity

field and pressure. These simplifications are present in the simulations of Purohit [52], Lestari [53],

and Rajagopalan [6], and result in time accurate solutions.

To remove these simplifications, iterations are used, similar to SIMPLE and SIMPLER, to

update the coefficients and pseudo-velocities after the momentum equations are updated. Section

2.4.2.1 shows these iterations reduce the error for large time step sizes but increase the runtime,

making the algorithm less efficient. These iterations are only used in Section 2.4.2.1 and are not

recommended.

The momentum equations (Eqs. 2.89 and 2.90) are integrated in time using explicit Runge-

Kutta methods. Purohit uses a Low-Storage ERK method with four stages and second order

accuracy from Jameson [11]. The Butcher tableau for this method (denoted ERK-LS4) is as follows.
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Table 2.2: ERK-LS4.

0

1/4 1/4

1/3 0 1/3

1/2 0 0 1/2

0 0 0 1

Referring back to the form of the momentum equations in Eqs. 2.89 and 2.90, the update

procedure for velocity components using ERK-LS4 is

(uP )1 = unP (vP )1 = vnP (2.94)

(uP )2 = unP +
1

4

∆t

ρ∆∀
(Ru)1 (vP )2 = vnP +

1

4

∆t

ρ∆∀
(Rv)1 (2.95)

(uP )3 = unP +
1

3

∆t

ρ∆∀
(Ru)2 (vP )3 = vnP +

1

3

∆t

ρ∆∀
(Rv)2 (2.96)

(uP )4 = unP +
1

2

∆t

ρ∆∀
(Ru)3 (vP )4 = vnP +

1

2

∆t

ρ∆∀
(Rv)3 (2.97)

un+1
P = unP +

∆t

ρ∆∀
(Ru)4 vn+1

P = vnP +
∆t

ρ∆∀
(Rv)4 , (2.98)

where (Ru)i represents the function Ru evaluated with the stage values of ui. For this velocity up-

date procedure the pressure and momentum coefficients are constant, and the only values changing

are the velocities.

2.3.3.2 RK-SIMPLER(A) Solution Procedure

The RK-SIMPLER(A) algorithm solves the decoupled pressure equation and momentum equa-

tions sequentially, and does not require sub-iterations or relaxation. The RK-SIMPLER(A) solution

procedure is as follows.

1. Start with an initial velocity field.

2. Calculate the momentum equation coefficients (Eqs. 2.53-2.58) using previous velocity field.

3. Calculate the pressure coefficients (Eqs. 2.84-2.87) using the pseudo-velocities defined in Eq.

2.93.
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4. Solve the pressure equation (Eq. 2.83).

5. Update the velocity field using explicit Runge-Kutta methods with the calculated pressure

field as a source (Eqs. 2.94-2.98).

6. Advance in time t = t+ ∆t and go to step 2.

No correction equations are used in the RK-SIMPLER(A) algorithm. This solution procedure

works with the assumption that coefficients of the momentum equations and pressure source are

constant over a time step. These assumptions reduce the computation, only requiring coefficients

and pressure to be calculated once, without the need for iterations within a time step.

Note that the momentum coefficients used to solve the pressure equation are modified using

either Crank-Nicolson or Fully Implicit, while the momentum coefficients used to update the mo-

mentum equations with ERK-LS4 are the unmodified coefficients.

The RK-SIMPLER(A) algorithm is shown visually in Fig. 2.5.

Start with an initial velocity field

Calculate momentum coefficients using previous velocity

Calculate coefficients of the pressure equation (Eqs.
2.84-2.87) using Eq. 2.93 for pseudo-velocities

Solve the pressure equation (Eq. 2.83)

Update the velocity field using explicit Runge-Kutta methods
(Eqs. 2.94-2.98)

Advance to the next
time step (t = t + ∆t)

Figure 2.5: Diagram of the RK-SIMPLER(A) algorithm.
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2.3.3.3 Variation B

The original RK-SIMPLER(A) algorithm keeps a constant pressure field for each RK stage, and

therefore, does not account for continuity at each stage. As discussed in Sanderse [22], the order

of accuracy may be limited. In an attempt to improve the RK-SIMPLER algorithm, variation

B accounts for continuity at each stage. To achieve this, a pressure equation is formulated each

Runge-Kutta stage from the stage equations, and not from a Fully Implicit or Crank-Nicolson

formulation as was used in variation A. The momentum equations are integrated with explicit RK

methods, with the following stage equation for u.

(uP )s = (uP )n + ∆t
s−1∑
l=1

αs,lFu
(
ul, t

n + γl∆t
)

for 2 ≤ s ≤ S (2.99)

Starting with s = 2 and recalling that in explicit RK methods u1 = un, Eq. 2.99 is expanded to

(uP )2 = (uP )n + α2,1
∆t

ρ∆∀

(∑
au−nbunb − au−PuP + bu

)n
− α2,1

∆t

ρ∆∀
∆y(pe − pw)1 , (2.100)

where coefficients are unmodified as defined in Eqs. 2.16, 2.15, and 2.22. The source term is defined

by bu = Su∆∀, which does not include pressure.

If, at the beginning of the time step, the velocity is known but the pressure is unknown (as was

assumed in RK-SIMPLER), (uP )2 and p1 are the only unknowns in Eq. 2.100. The stage equation

is simplified to the following.

(uP )2 = û2 + (du)2(pw − pe)1 , (2.101)

with

û2 = (uP )n + α2,1
∆t

ρ∆∀

(∑
au−nbunb − au−PuP + bu

)n
(2.102)

(du)2 = α2,1
∆t

ρ∆∀
∆y . (2.103)

A similar equation is found for (vP )2.

(vP )2 = v̂2 + (dv)2(ps − pn)1 , (2.104)
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with

v̂2 = (vP )n + α2,1
∆t

ρ∆∀

(∑
av−nbvnb − av−P vP + bv

)n
(2.105)

(dv)2 = α2,1
∆t

ρ∆∀
∆x , (2.106)

where the source term defined by bv = Sv∆∀ does not contain pressure, and coefficients are un-

modified as in Eqs. 2.16, 2.15, and 2.23.

The fully discrete momentum equations (Eqs. 2.101 and 2.104) are substituted into the discrete

continuity equation (Eq. 2.44) at control volume faces to form an equation for pressure at stage 1.

(ap−P )1 (pP )1 =(ap−E)1 (pE)1 + (ap−W )1 (pW )1

+(ap−N )1 (pN )1 + (ap−S)1 (pS)1 + (bp)1 , (2.107)

where

(ap−E)1 =
[
ρ (du)1

]
e
∆y (ap−W )1 =

[
ρ (du)1

]
w

∆y (2.108)

(ap−N )1 =
[
ρ (dv)1

]
n
∆x (ap−S)1 =

[
ρ (dv)1

]
s
∆x (2.109)

(ap−P )1 = (a(p−E)1 + (ap−W )1 + (ap−N )1 + (ap−S)1 (2.110)

(bp)1 =
[
ρ(û)1

]
e
∆y −

[
ρ(û)1

]
w

∆y +
[
ρ(v̂)1

]
n
∆x−

[
ρ(v̂)1

]
s
∆x . (2.111)

Once pressure is known, the velocity components are updated to stage 2 by Eqs. 2.101 and 2.104.

The velocity and pressure are decoupled at each stage, with pressure solved first and momentum

equations explicitly updated second. The pressure equation extracts a pressure that drives the

velocity field towards satisfying continuity when the velocity components are updated. This process

is carried out for all stages in the RK method. The process shown above for stage 2 is generalized

for any RK stage below.

(uP )s = ûs + (du)s(pw − pe)s−1 for 2 ≤ s ≤ S , (2.112)
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with

ûs =(uP )n + αs,s−1
∆t

ρ∆∀

(∑
au−nbunb − au−PuP + bu

)
s−1

+ ∆t

s−2∑
l=1

αs,lFu(ul, t
n + γl∆t) (2.113)

(du)s =αs,s−1
∆t

ρ∆∀
∆y . (2.114)

For the y velocity component,

(vP )s = v̂s + (dv)s(ps − pn)s−1 for 2 ≤ s ≤ S , (2.115)

with

v̂s =(vP )n + αs,s−1
∆t

ρ∆∀

(∑
av−nbvnb − av−P vP + bv

)
s−1

+ ∆t
s−2∑
l=1

αs,lFv(vl, t
n + γl∆t) (2.116)

(dv)s =αs,s−1
∆t

ρ∆∀
∆x . (2.117)

In both Eq. 2.113 and 2.116, the source terms for the s− 1 stages do not contain pressure, but the

functions Fu and Fv for stages 1 ≤ l ≤ s−2 contain pressure from previous stages. The momentum

coefficients are calculated at each stage using the velocity for that given stage.

The fully discrete momentum equations at each stage are substituted into the discrete continuity

equation (Eq. 2.44) at all control volume faces to form an equation for pressure at each stage.

(ap−P )s−1 (pP )s−1 =(ap−E)s−1 (pE)s−1 + (ap−W )s−1 (pW )s−1

+(ap−N )s−1 (pN )s−1 + (ap−S)s−1 (pS)s−1 + (bp)s−1 , (2.118)

where

(ap−E)s−1 =
[
ρ (du)s

]
e
∆y (ap−W )s−1 =

[
ρ (du)s

]
w

∆y (2.119)

(ap−N )s−1 =
[
ρ (dv)s

]
n
∆x (ap−S)s−1 =

[
ρ (dv)s

]
s
∆x (2.120)
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(ap−P )s−1 = (a(p−E)s−1 + (ap−W )s−1 + (ap−N )s−1 + (ap−S)s−1 (2.121)

(bp)s−1 =
[
ρ(û)s

]
e
∆y −

[
ρ(û)s

]
w

∆y +
[
ρ(v̂)s

]
n
∆x−

[
ρ(v̂)s

]
s
∆x . (2.122)

The final n + 1 value for velocity is found by noting pS is not yet known, and forming the

following equations.

(uP )n+1 = ûn+1 + (du)n+1(pw − pe)S , (2.123)

with

ûn+1 =(uP )n + βS
∆t

ρ∆∀

(∑
au−nbunb − au−PuP + bu

)
S

+ ∆t
S−1∑
s=1

βsFu(us, t
n + γs∆t) (2.124)

(du)n+1 =βS
∆t

ρ∆∀
∆y . (2.125)

For y velocity,

(vP )n+1 = v̂n+1 + (dv)
n+1(ps − pn)S , (2.126)

with

v̂n+1 =(vP )n + βS
∆t

ρ∆∀

(∑
av−nbvnb − av−P vP + bv

)
S

+ ∆t

S−1∑
s=1

βsFv(vs, t
n + γs∆t) (2.127)

(dv)
n+1 =βS

∆t

ρ∆∀
∆x . (2.128)

The pressure equation for the final stage is

(ap−P )S (pP )S =(ap−E)S (pE)S + (ap−W )S (pW )S

+(ap−N )S (pN )S + (ap−S)S (pS)S + (bp)S , (2.129)

where

(ap−E)S =
[
ρ (du)n+1

]
e
∆y (ap−W )S =

[
ρ (du)n+1

]
w

∆y (2.130)

(ap−N )S =
[
ρ (dv)

n+1
]
n
∆x (ap−S)S =

[
ρ (dv)

n+1
]
s
∆x (2.131)
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(ap−P )S = (a(p−E)S + (ap−W )S + (ap−N )S + (ap−S)S (2.132)

(bp)S =
[
ρ(û)n+1

]
e
∆y −

[
ρ(û)n+1

]
w

∆y +
[
ρ(v̂)n+1

]
n
∆x−

[
ρ(v̂)n+1

]
s
∆x . (2.133)

Three different ERK methods are used in the RK-SIMPLER(B) algorithm. ERK1 is a one stage,

first order accurate method equivalent to the Euler explicit integration. ERK2 is a two stage, second

order accurate method, commonly known as the midpoint method. ERK3 is a three stage, third

order accurate method of Wray [22]. The Butcher tableaus for these three ERK methods are given

in Tables 2.3-2.5.

Table 2.3: ERK1.

0 0

1

Table 2.4: ERK2.

0 0

1/2 1/2 0

0 1

Table 2.5: ERK3.

0 0

8/15 8/15 0

2/3 1/4 5/12 0

1/4 0 3/4

2.3.3.4 RK-SIMPLER(B) Solution Procedure

Solving pressure and velocity at each stage and the final update to the n + 1 time level is the

same as described for the second stage. First, pressure is solved from the pressure equation, then

velocities are updated explicitly. The procedure for the RK-SIMPLER(B) is as follows.

1. Start with an initial velocity field.

2. Start a new time step with s = 2. Set u1 = un and v1 = vn.

3. Calculate the momentum equation coefficients (Eqs. 2.16, 2.15, 2.22, and 2.23) using the

previous stage velocity.

4. Calculate the pressure coefficients (Eqs. 2.119-2.122) using the values defined in Eqs. 2.113-

2.117.

5. Solve the pressure equation for ps−1 (Eq. 2.118).

6. Update velocity components from Eqs. 2.112 and 2.115.
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7. If s = S go to step 8, otherwise set s = s+ 1 and go to step 3.

8. Calculate the momentum equation coefficients (Eqs. 2.16, 2.15, 2.22, and 2.23) using the final

stage velocity.

9. Calculate the pressure coefficients (Eqs. 2.130-2.133) using the values defined in Eqs. 2.124-

2.128.

10. Solve the pressure equation for pS (Eq. 2.129).

11. Update velocity components to n+ 1 using Eqs. 2.123 and 2.126.

12. Advance in time t = t+ ∆t and go to step 2.

This procedure is shown visually in Fig. 2.6. With variation B the pressure and velocity

are decoupled, and equations to satisfy both momentum and continuity are developed each stage.

RK-SIMPLER(B) requires more calculations per time step than RK-SIMPLER(A) because the

momentum coefficients are updated and the pressure equation is solved at each stage. The pressure

is not updated to n+ 1 time level until the first stage of the next time step.

2.3.4 IRK-SIMPLER Algorithm

The RK-SIMPLER(A) algorithm efficiently and accurately simulates unsteady flow problems,

but time step restrictions are severe in many cases [6]. IRK methods improve the time step restric-

tions. The IRK-SIMPLER algorithm uses IRK methods to integrate momentum equations and

solves a pressure equation to satisfy continuity. Two variations are discussed, one that solves the

pressure equation once per time step and one that solves the pressure equation each stage.
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Start with initial velocity and pressure fields

Start Explicit RK Stages with
s=2 and set (u, v)1 = (u, v)n

Calculate momentum coefficients using the previous stage velocity

Calculate coefficients of the pressure equa-
tion (Eqs. 2.119-2.122) using Eqs. 2.113-2.117

Solve the pressure equation (Eq. 2.118) for ps

Update (u, v)s (Eqs. 2.112 & 2.115)

s = S?

Yes

Nos = s + 1

Calculate momentum coefficients using the final stage velocity

Calculate coefficients of the pressure equa-
tion (Eqs. 2.130-2.133) using Eqs. 2.124-2.128

Solve the pressure equation (Eq. 2.129) for pS

Update (u, v)n+1 (Eqs. 2.123 & 2.126)

Advance to the next
time step (t = t + ∆t)

Figure 2.6: Diagram of the RK-SIMPLER(B) algorithm.
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2.3.4.1 Variation A

The IRK-SIMPLER(A) algorithm follows the same procedure as the RK-SIMPLER(A) al-

gorithm, but instead of integrating the momentum equations with an explicit method, IRK-

SIMPLER(A) integrates the momentum equations with implicit RK methods, specifically ESDIRK

methods. The ESDIRK methods are chosen over FIRK or DIRK methods because of the lower

cost of computation.

Similar to the explicit methods, ESDIRK methods require u1 = un. Eq. 2.89 expands to the

following for ESDIRK methods.

(uP )s = un + k∆tFu(us, t
n + γs∆t) + ∆t

s−1∑
l=1

αs,lFu(ul, t
n + γl∆t) 2 ≤ s ≤ S , (2.134)

where k = αs,s which is constant for all stages. Rearranging and using the definition of Fu

(uP )s = un +
k∆t

ρ∆∀

[∑
(au−nb)

n (unb)s + (bu)n − (au−P )n (uP )s

]
+ ∆t

s−1∑
l=1

αs,lFu(ul, t
n + γl∆t) 2 ≤ s ≤ S , (2.135)

where coefficients and source are unmodified as defined in Eqs. 2.16, 2.15, 2.22, and 2.23. The

coefficients and source are evaluated once for all stages at time level n. This equation is set in a

form suitable for solving with a linear solver.

a′u−P (uP )s =
∑

(au−nb)
n(unb)s + b′u , (2.136)

where

a′u−P = (au−P )n +
ρ∆∀
k∆t

(2.137)

b′u = (bu)n +
ρ∆∀
k∆t

(uP )n +
1

k

s−1∑
l=1

αs,l
(
Ru
)
l
. (2.138)

Similar to RK-SIMPLER(A), once the pressure equation is solved this equation updates the velocity

field through each stage without recalculating momentum coefficients or pressure. Equation 2.136

is solved once for ESDIRK2 and twice for ESDIRK3. Because the coefficients do not change from

stage to stage, LU factorization is used to factorize the coefficient matrix for the first stage. That
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factorized coefficient matrix is then used for all other stages with only a new set of source terms.

See Appendix B for how this LU factorization, along side an approximate factorization, reduces

the computation time to solve these equations. The IRK-SIMPLER(A) algorithm is tested with

and without these factorizations.

Because the ESDIRK methods used are also stiffly accurate, the final update to time level n+1

is trivial, un+1 = uS .

Two different ESDIRK methods are used to test the IRK-SIMPLER(A) algorithm. ESDIRK2

is a two stage, second order accurate method that is equivalent to Crank-Nicolson time integration.

ESDIRK3 is a three stage, third order accurate method. Both of these methods are stiffly accurate,

implying un+1 = uS . The Butcher Tableaus for these two methods are given in Tables 2.6 and 2.7.

Table 2.6: ESDIRK2.

0 0

1 1/2 1/2

1/2 1/2

Table 2.7: ESDIRK3, δ =
√

3/3.

0 0

1− δ 1
2(1− δ) 1

2(1− δ)

1 1− 1
2( 1

1−δ − δ)
1
2( 1

1−δ − 1) 1
2(1− δ)

1− 1
2( 1

1−δ − δ)
1
2( 1

1−δ − 1) 1
2(1− δ)

2.3.4.2 IRK-SIMPLER(A) Solution Procedure

The IRK-SIMPLER(A) algorithm follows the RK-SIMPLER(A) procedure closely by solving

the pressure equation first using a Crank-Nicolson or Fully Implicit time integration, then updating

the velocity using an ESDIRK method.

1. Start with an initial velocity field.

2. Calculate the momentum equation coefficients (Eqs. 2.53-2.58) using previous velocity field.

3. Calculate the pressure coefficients (Eqs. 2.84-2.87) using the pseudo-velocities defined in Eq.

2.93.

4. Solve the pressure equation (Eq. 2.83).
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5. Update the velocity field by solving the implicit equations for each stage (Eq. 2.136) with

the calculated pressure field as a source.

6. Final update to n+1 time level (un+1 = uS and vn+1 = vS) for stiffly accurate IRK methods.

7. Advance in time t = t+ ∆t and go to step 2.

Figure 2.7 shows this procedure visually.

Start with an initial velocity field

Calculate momentum coefficients using previous velocity

Calculate coefficients of the pressure equation (Eqs.
2.84-2.87) using Eq. 2.93 for pseudo-velocities

Solve the pressure equation (Eq. 2.83)

Solve the momentum equations for (u, v)s
for each implicit Runge-Kutta stage (s = 1, 2, ..., S) (Eq. 2.136)

Final update to n+1 for stiffly accurate: (u, v)n+1 = (u, v)S

Advance to the next
time step (t = t + ∆t)

Figure 2.7: Diagram of the IRK-SIMPLER(A) algorithm.

2.3.4.3 Variation B

IRK-SIMPLER(B) uses DIRK methods and, like RK-SIMPLER(B), a pressure equation is

developed each stage to better satisfy all conservation equations. As with RK-SIMPLER(B), the

pressure equation is formed each stage from the RK stage equation. Unlike RK-SIMPLER(B), the

pressure and velocity are coupled and solved simultaneously to satisfy all equations. Recall the
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stage equations for DIRK methods.

(uP )s = (uP )n + ∆t
s∑
l=1

αs,lFu
(
ul, t

n + γl∆t
)

for 1 ≤ s ≤ S (2.139)

Rearranging and using the definition of Fu

(uP )s = (uP )n + as,s
∆t

ρ∆∀

(∑
au−nb unb − au−P uP + bu −∆y(pe − pw)

)
s

(2.140)

+ ∆t

s−1∑
l=1

αs,lFu
(
ul, t

n + γl∆t
)
.

Defining the term

Rs(u) = ρ∆∀
s−1∑
l=1

αs,lFu
(
ul, t

n + γl∆t
)

(2.141)

leads to the fully discrete x momentum equation for each stage.

a′u−P (uP )s =
∑

(au−nb)s (unb)s + b′u + ∆y(pw − pe)s , (2.142)

where

a′u−P = (au−P )s +
ρ∆∀
αs,s∆t

(2.143)

b′u = (bu)s +
ρ∆∀
αs,s∆t

(uP )n +
Rs(u)

αs,s
. (2.144)

Similarly for the y momentum equation

a′v−P (vP )s =
∑

(av−nb)s (vnb)s + b′v + ∆x(ps − pn)s , (2.145)

where

a′v−P = (av−P )s +
ρ∆∀
αs,s∆t

(2.146)

b′v = (bv)s +
ρ∆∀
αs,s∆t

(vP )n +
Rs(v)

αs,s
. (2.147)

The momentum equations are written as

(uP )s = ûs + (du)s(pw − pe)s (2.148)

(vP )s = v̂s + (dv)s(ps − pn)s , (2.149)
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with

ûs =

∑
(au−nb unb)s + b′u

a′u−P
(du)s =

∆y

a′u−P
(2.150)

v̂s =

∑
(av−nb vnb)s + b′v

a′v−P
(dv)s =

∆x

a′v−P
. (2.151)

To derive a pressure equation, the momentum equations (Eqs. 2.148 and 2.149) are substituted

into the discrete continuity equation (Eq. 2.44), and an equation for pressure is found.

(ap−P )s (pP )s =(ap−E)s (pE)s + (ap−W )s (pW )s

+(ap−N )s (pN )s + (ap−S)s (pS)s + (bp)s , (2.152)

where

(ap−E)s =
[
ρ (du)s

]
e
∆y (ap−W )s =

[
ρ (du)s

]
w

∆y (2.153)

(ap−N )s =
[
ρ (dv)s

]
n
∆x (ap−S)s =

[
ρ (dv)s

]
s
∆x (2.154)

(ap−P )s = (a(p−E)s + (ap−W )s + (ap−N )s + (ap−S)s (2.155)

(bp)s =
[
ρ(û)s

]
e
∆y −

[
ρ(û)s

]
w

∆y +
[
ρ(v̂)s

]
n
∆x−

[
ρ(v̂)s

]
s
∆x . (2.156)

Unlike RK-SIMPLER(B), the pressure equation source term contains ûs and v̂s which are

unknown, being functions of the velocity components at the sth stage. IRK-SIMPLER(B) has

a coupled pressure and velocity at each stage (i.e., the stage equation, Eq. 2.142, has pressure

and velocity as unknowns on the right hand side of the equation, so it cannot be substituted into

continuity and solved for pressure immediately).

The procedure for coupling the pressure and velocity is as follows. First, the momentum equa-

tions (Eqs. 2.142 and 2.145) are solved implicitly with the momentum coefficients and pressure

term lagged by one stage (i.e., assume ps = ps−1 and as = as−1). With approximations for the up-

dated velocity components, the momentum coefficients are updated to the sth stage (i.e., calculate

as). An iterative loop is then preformed to couple pressure and velocity. This corrective inner loop

follows closely to the inner loop of the IDEAL algorithm [9]. In the loop, first pressure coefficients
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are calculated from ûs, v̂s, (du)s, and (dv)s, and the pressure equation is solved. With an updated

pressure, the momentum equations are updated explicitly with Eqs. 2.148 and 2.149. The values

of ûs and v̂s are then updated, and pressure is solved again. This loop of calculating û and v̂,

solving pressure, and updating momentum explicitly is an efficient method to couple pressure and

velocity without multiple implicit momentum equation solutions, relaxation, or outer iterations.

In practice, only a few iterations are needed to effectively couple the pressure and velocity (five

iterations are used for all simulations in this paper).

If the initial pressure field is not known, as was assumed for all other methods, then a guess

pressure field is calculated before the first time step from a pressure equation. This pressure

equation is formed in the same way as RK-SIMPLER(A) with Crank-Nicolson or Fully Implicit

discretization. The choice of integration method for this initial guess pressure has little effect on

the solution as it is only used in the first time step to find an initial guess of the pressure field. Once

the first time step has been completed, an accurate pressure field is obtained from the coupling

procedure of IRK-SIMPLER(B). Using uniform pressure for a guessed pressure field the first time

step instead of calculating a pressure field also yields accurate results.

The momentum coefficients are updated after the momentum equations are implicitly solved

and contain some error. Optional iterations may be done, such that the momentum coefficients

are recalculated after some number of inner coupling iterations. It is shown in Section 2.4.2.1 that

only one iteration is sufficient to reach an accurate solution and additional iterations yield a small

reduction of error with added computations. The final update to the n + 1 time level forms an

explicit equation similar to the explicit RK method. By using stiffly accurate DIRK methods which

require uS = un+1, once the final stage is completed the updated velocity and pressure are known.

Stiffly accurate DIRK methods are used in the IRK-SIMPLER(B) algorithm because they require

fewer computations and have improved stability when solving stiff equations.

Three stiffly accurate DIRK methods are used to test the IRK-SIMPLER(B) algorithm. DIRK1

is a one stage, first order accurate method equivalent to Euler implicit (Fully Implicit) integration.

DIRK2 is a two stage, second order accurate method, and DIRK3 is a three stage, third order
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accurate method (both are developed in Alexander [50]). The Butcher Tableaus for these three

DIRK methods are given in Tables 2.8-2.10.

Table 2.8: DIRK1.

1 1

1

Table 2.9: DIRK2, α = 1−
√

2/2.

α α

1 1−α α

1−α α

Table 2.10: DIRK3.

α α α is the root of x3 − 3x2 + 3
2x−

1
6 = 0 lying in (1

6 ,
1
2)

τ2 τ2 − α α τ2 = (1 + α)/2

1 b1 b2 α b1 = −(6α2 − 16α+ 1)/4

b1 b2 α b2 = (6α2 − 20α+ 5)/4

2.3.4.4 IRK-SIMPLER(B) Solution Procedure

The procedure for IRK-SIMPLER(B) is as follows.

1. Start with initial velocity and pressure fields.

2. Start implicit Runge-Kutta stages with s = 1.

3. Calculate the momentum equation coefficients (Eqs. 2.143, 2.144, 2.146, and 2.147) using

previous velocity field.

4. Solve momentum equations implicitly with pressure and coefficients lagged (Eqs. 2.142 and

2.145).

5. Update momentum coefficients with updated velocities (Eqs. 2.143, 2.144, 2.146, and 2.147).

6. Calculate the pressure coefficients from du and dv (Eqs. 2.153-2.155).

7. Couple the pressure and velocity with inner iterations via:

(a) Update û and v̂ and calculate pressure source bp (Eq. 2.156).
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(b) Solve the pressure equation (Eq. 2.152).

(c) Update velocity components explicitly from Eqs. 2.148 and 2.149.

8. If updating momentum coefficients again go to step 5, otherwise continue to step 9.

9. If s < S set s = s+ 1 and go to step 3, otherwise continue to step 10.

10. Set un+1 = uS , vn+1 = vS , and pn+1 = pS for stiffly accurate final updates

11. Advance in time t = t+ ∆t and go to step 2.

The IRK-SIMPLER(B) procedure is also shown in Figure 2.8.

2.3.5 Algorithm Flowcharts

Figure 2.9 shows an outline of all algorithms of interest for one time step to compare the

amount of work required to complete one time step. Shaded boxes in Fig. 2.9 represent implicit,

iterative solution processes (i.e., matrix equation solutions), which require more computations than

the explicit white boxes. RK-SIMPLER(A) requires only one implicit equation to be solved, while

RK-SIMPLER(B) requires one implicit equation to be solved for each Runge-Kutta stage. For

IRK-SIMPLER(A) in two-dimensions, three implicit equations are solved (one for each velocity

component and one for pressure), but IRK-SIMPLER(B) requires the solution of the momentum

equations implicitly for each Runge-Kutta stage, and the pressure equation to be solved multiple

times within each Runge-Kutta stage. In practice, the pressure equation in the inner loop of IRK-

SIMPLER(B) does not require a fully converged solution each iteration, but is solved alongside

the explicit update of momentum equations for a more efficient solution procedure (i.e. each inner

loop a few iterations of the pressure solver is used followed by the explicit momentum update).

The SIMPLER algorithm requires the solution of four implicit equations each sub-iteration within

a time step.
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Start with initial velocity and pressure fields

Start Implicit RK Stages with s=1

Calculate momentum coefficients using previous velocity

Solve the momentum equations (Eqs. 2.142 & 2.145) for (u, v)s

Update momentum coefficients using the most recent (u, v)s

Calculate coefficients of the pressure equation (Eqs. 2.153-2.155)

Calculate (û, v̂)s (Eq. 2.151) and then bp (Eq. 2.156)

Solve the pressure equation (Eq. 2.152) for ps

Update (u, v)s (Eqs. 2.148 & 2.149) using the most recent (û, v̂)s

Converged?

Yes

No

Update momentum coefficients again?

No

Yes

s = S?

Yes

Nos = s + 1

Final update to n+1 for stiffly accurate: (u, v, p)n+1 = (u, v, p)S

Advance to the next
time step (t = t + ∆t)

Figure 2.8: Diagram of the IRK-SIMPLER(B) algorithm.
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SIMPLE SIMPLER RK-SIMPLER IRK-SIMPLER

RK-A RK-B IRK-A IRK-B

Sub-
Iterations

Sub-
Iterations

ERK
stages: for
s = 2, S

DIRK
stages: for
s = 1, S

Solve
Momentum
Equations

Solve
Pressure

Correction
Equation

Correct
Pressure

Field

Correct
Velocity

Field

Check
Convergence

Solve
Pressure
Equation

Solve
Momentum
Equations

Solve
Pressure

Correction
Equation

Correct
Velocity

Field

Check
Convergence

Solve
Pressure
Equation

ERK-LS
stages:

for s = 2, S

Update
Momentum
Equations

to s

Update
Momentum
Equations
to n + 1

Solve
Pressure
Equation
for s − 1

Update
Momentum
Equations

to s

Solve
Pressure
Equation

for S

Update
Momentum
Equations
to n + 1

Solve
Pressure
Equation

ESDIRK
stages:

for s = 2, S

Solve
Momentum
Equations

Update
Momentum
Equations
to n + 1

Solve
Momentum
Equations

for s

Solve
Pressure
Equation

for s

Update
Momentum
Equations

Check
Convergence

Update
Pressure

and Velocity
to n + 1

Figure 2.9: Algorithm procedure for one time step (shaded boxes are implicit solutions).

For comparison, if the SIMPLER algorithm has a fixed 20 sub-iterations, each time step requires

the solution of 80 implicit equations each time step. RK-SIMPLER(A) requires the solution of only

one implicit equation, and IRK-SIMPLER(A) requires the solution of three implicit equations each

time step. For an S stage ERK method, RK-SIMPLER(B) requires S implicit equations to be

solved, and IRK-SIMPLER(B) requires 3S implicit equations to be solved each time step. Ranking

the amount of work required for one time step of each algorithm from least to greatest for a

typical number of RK stages: 1) RK-SIMPLER(A), 2) IRK-SIMPLER(A), 3) RK-SIMPLER(B),

4) IRK-SIMPLER(B), 5) SIMPLE, and 6) SIMPLER.



www.manaraa.com

56

RK-SIMPLER(A) and IRK-SIMPLER(A) are simple, efficient methods that require no sub-

iterations and the solution of the pressure and momentum equations only once per time step.

However, the A variants rely on the assumption that pressure and momentum coefficients are

constant for a time step. RK-SIMPLER(B) requires pressure to be solved for each RK stage,

but no iterations are needed within the stages. IRK-SIMPLER(B) requires iterations within each

RK stage and the pressure equation is solved each stage alongside the momentum equations. All

RK-SIMPLER and IRK-SIMPLER algorithms require no relaxation.

SIMPLE and SIMPLER require sub-iterations (typically 10 to 50) for which all steps are re-

peated. RK-SIMPLER(A) and IRK-SIMPLER(A) require no sub-iterations, only iteration through

the RK stages (either ERK-LS or ESDIRK), where only the momentum equations are solved/updated.

RK-SIMPLER(B) also requires no sub-iterations, but the iteration through the ERK stages in-

volve both the solution of the pressure equation and the update of the momentum equations.

IRK-SIMPLER(B) requires iteration through DIRK stages to solve the momentum equations once

implicitly and then inner iteration to both solve the pressure equation and update the momen-

tum equations. The iterations in IRK-SIMPLER(B) include the inner loop to couple pressure

and velocity as well as the loop to update the momentum equation coefficients (see Fig. 2.8).

IRK-SIMPLER(B) iterations are fewer in number than SIMPLE and SIMPLER (typically 1-2 mo-

mentum coefficient updates and 5-10 pressure-velocity loops, 5-20 total iterations) with much less

work each iteration compared to either SIMPLE or SIMPLER.

The total number of implicit equations each algorithm requires to solve each time step is shown

in Table 2.11. IRK-SIMPLER(B) requires the implicit pressure equation to be solved many times;

however, in the inner loop the pressure equation is not solved completely. In the inner loop, a lower

residual tolerance or fewer fixed iterations are used rather than a more rigorous solution found in

other algorithms. Using fewer iterations on the pressure equation and more inner iterations, the

pressure and velocity are solved more closely together.
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Table 2.11: Number of implicit equations each time step for each algorithm1.

Algorithm # Implicit Eqs. for # Implicit Eqs. for

Two-Dimensions Three-Dimensions

SIMPLE 3Nsub 4Nsub

SIMPLER 4Nsub 5Nsub

RK-SIMPLER(A) 1 1

RK-SIMPLER(B) S S

IRK-SIMPLER(A) 1 + 2(S − 1) 1 + 3(S − 1)

IRK-SIMPLER(B) (2 +NupNp−v)S (3 +NupNp−v)S

Table 2.12 shows the naming conventions used to denote different algorithms and time integra-

tion methods tested. Both Approximate Factorization (AF) and LU factorization are used together

in this study for IRK-SIMPLER(A) and is denoted by the acronym AF.

Table 2.12: Nomenclature to define algorithms and time integration methods.

Algorithm Time Integration Method Shorthand Name

SIMPLER Fully Implicit S-FI

Crank-Nicolson S-CN

RK-SIMPLER(A) ERK-LS4 RK-A

RK-SIMPLER(B) ERK1 RK-B1

ERK2 RK-B2

ERK3 RK-B3

IRK-SIMPLER(A) ESDIRK2 IRK-A1

ESDIRK3 IRK-A2

ESDIRK2 w/ AF IRK-A1-AF

ESDIRK3 w/ AF IRK-A2-AF

IRK-SIMPLER(B) DIRK1 IRK-B1

DIRK2 IRK-B2

DIRK3 IRK-B3

1Nsub=number of sub-iterations, S=number of RK stages, Nup=number of momentum coefficient updates for
IRK-SIMPLER(B), Np−v=number of pressure-velocity coupling iterations for IRK-SIMPLER(B).
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2.4 Algorithm Validation and Efficiency

2.4.1 Lid-Driven Cavity

The lid-driven cavity is a simple test case for incompressible flow and is used to analyze the

algorithms of interest. The lid-driven cavity case is set up as a two-dimensional box with a moving

lid on the top (Fig. 2.10). The lid moves at a constant speed Ulid, and the dimensions of the

box are L by L. All sides of the box are no-slip walls. The Reynolds number for this case is

Re = ρUlidL/µ. The values used to non-dimensionalized this case are L for length, Ulid for velocity,

and L/Ulid for time. Non-dimensional values are denoted with primes. For example, u′ = u/Ulid

and ∆t′ = ∆t ∗ Ulid/L.

L

L

Ulid

Re =
ρUlidL

µ

x

y

Figure 2.10: Schematic of the lid-driven cavity problem.

Simulations are run on a 42 by 42 uniform grid (∆x′ = ∆y′ = 0.025) with steady state results

from two Reynolds number cases (100 and 1,000) presented. The C-N SIMPLER, RK-SIMPLER,

and IRK-SIMPLER algorithms are compared in Fig. 2.11 by plotting u-velocity profiles against y

at the vertical center-line (x′ = 0.5), and v-velocity profiles against x at the horizontal center-line

(y′ = 0.5).

The results for all algorithms fall on top of each other because the same spatial discretization is

used for all algorithms, and the simulations are all run until a steady state is reached. The results

for all methods are not shown, but all profiles match with u and v L2 error less than 1 × 10−10.

These results verify all Runge-Kutta algorithms accurately simulate steady flows.
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Figure 2.11: Driven cavity center-line velocity profiles.

Results are compared to simulation results of Wirogo [29] in Figs. 2.12. Results at Reynolds

number of 100 match well on this relatively coarse grid, while results at Reynolds number of 1,000

do not match as closely. A more refined grid is required to better match the results of Wirogo [29].

Chapter 4 examines different flux schemes, and shows how different methods converge to match

Wirogo’s data.
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Figure 2.12: Driven cavity velocity profiles compared to Wirogo’s results.

The RK-SIMPLER and IRK-SIMPLER algorithms have time step restrictions based on stability

constraints. The SIMPLER (as well as the untested SIMPLE) algorithms simulate steady cases

without a time step size, using suitable relaxation and sub-iterations. In practice, the maximum

allowable time step size for RK- and IRK-SIMPLER is found by incrementally increasing the time

step until the algorithm diverges. For driven cavity simulations, the maximum allowable time steps

are given in Tables 2.13 and 2.14. The implicit methods allow for larger time step sizes than the
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explicit method, with the IRK-SIMPLER(B2) method allowing for the largest time step size. The

time step size does not have any impact on the steady state solution.

Table 2.13: RK-SIMPLER(A) and IRK-SIMPLER(A) maximum allowable time step size.

Maximum Allowable Time Step Size

(non-dimensional)

Algorithm Re = 100 Re = 1, 000

RK-A 0.020 0.054

IRK-A1 0.037 0.140

IRK-A2 0.037 0.140

IRK-A1-AF 0.037 0.140

IRK-A2-AF 0.037 0.140

Table 2.14: RK-SIMPLER(B) and IRK-SIMPLER(B) maximum allowable time step size.

Maximum Allowable Time Step Size

(non-dimensional)

Algorithm Np
2 Re = 100 Re = 1, 000

RK-B1 5 0.015 0.050

200 0.015 0.050

RK-B2 5 0.015 0.050

200 0.015 0.051

RK-B3 5 0.019 0.064

200 0.019 0.064

IRK-B1 5 0.069 0.490

200 0.200 0.640

IRK-B2 5 0.110 0.470

200 0.700 0.480

IRK-B3 5 0.063 0.200

200 0.470 0.200

For RK-SIMPLER(B) and IRK-SIMPLER(B), the impact of the number of iterations used to

solve the pressure equation is of interest. To show the effect of iterations on the pressure equation,

Fig. 2.13 shows the residual of the pressure equation with number of iterations. The method used

2Np is the number of pressure equation iterations each stage.
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to solve the pressure equation is a line-by-line, Tri-Diagonal Matrix Algorithm (TDMA) method,

in which grid lines are solved by TDMA one by one with symmetric Gauss-Seidel marching of grid

lines in the y direction, then the x direction. The x and y momentum residuals are shown with

number of iterations in Fig. 2.14. The momentum equation’s residual drops to near zero in just a

few iterations, but the pressure equation converges much more slowly, with a residual drop of three

orders of magnitude after about 200 iterations.
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Figure 2.13: Pressure equation residual.
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Figure 2.14: Momentum equation residual.

The pressure equation is traditionally solved with five iterations for SIMPLER and RK-SIMPLER(A).

For RK-SIMPLER(B), five and 200 iterations are tested for an economical solution of pressure and

a more accurately converged solution of pressure, respectively. For IRK-SIMPLER(B), the number

of inner iterations used to couple velocity and pressure is fixed at five, and the pressure equation

is iterated one and 40 times (resulting in five and 200 pressure iterations per stage respectively).

For RK-SIMPLER(B), the pressure equation iterations have little to no effect on the maximum

allowable time step size. For IRK-SIMPLER(B), the number of pressure equation iterations sig-

nificantly impact allowable time step size at Reynolds number of 100, but less of an impact at

Reynolds number of 1,000. All IRK-SIMPLER(B) methods have larger allowable time steps than

the IRK-SIMPLER(A) methods. Also, the different IRK-SIMPLER(B) methods have large differ-

ences in the time step size possible, with IRK-B2 allowing for the largest time step size at Reynolds

number of 100, and IRK-B1 allowing for the largest time step size at Reynolds number of 1,000.
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The RK algorithms are developed as methods for simulating unsteady flows efficiently. To

solve the steady driven cavity, simulations carry on until steady state is reached. The SIMPLER

algorithm simulates steady flows by iterating until convergence without time steps needed.

Note that the IRK-SIMPLER(B) results shown here for the driven cavity are all using one

momentum coefficient update each stage. The impact of using more than one momentum coefficient

update will be examined in later sections.

2.4.2 Temporal Order of Accuracy

The driven cavity problem with a Reynolds number of 100 is used to test the temporal order

of accuracy of the algorithms. For each algorithm, the cavity is run to a non-dimensional time of

0.1 over a range of time step sizes, all using the same 42 by 42 uniform grid. To calculate the error

of the simulations, an exact solution is needed. To approximate that exact solution, the driven

cavity is simulated with SIMPLER at a very fine time step size (1 × 10−7), using Crank-Nicolson

for time integration and 50 sub-iterations every time step. All simulations are compared to the

“exact” solution of SIMPLER, and the L2 norm of u error over the domain is computed. Figures

2.15-2.18 show the error versus time step size for all methods tested. The slope of the error gives

the order of accuracy for the method. Reference slope lines are shown as solid lines in the figures,

and the x-axis is inverted to show decreasing time step size along the positive x-direction.

For SIMPLER, both Fully Implicit (FI) and Crank-Nicolson (C-N) are tested to validate the

process used in the analysis. FI is known to be first order accurate, and C-N is second order

accurate. Figure 2.15 verifies this procedure, showing FI to be first order and C-N to be second

order.

Figure 2.16 shows the error for RK-SIMPLER(A) and IRK-SIMPLER(A) methods. The explicit

(RK-A) and implicit (IRK-A1) methods fall on top of each other and are first order accurate. Only

IRK-A1 is shown, but all IRK-A methods fall on this same line. For time step sizes lower than

1 × 10−4, the slope is constant and first order, but for larger time step sizes, the error increases

rapidly. This increase in error for large time steps may be an issue of stability of the algorithm.
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Figure 2.15: Temporal order of accuracy for SIMPLER.

The RK-A and IRK-A methods, while only first order, produce less error than the first order S-FI

method for time step sizes lower than 2× 10−3.

Figure 2.17 shows the error for RK-SIMPLER(B) methods, with the number of pressure equa-

tion iterations per RK stage in parentheses. The RK-B1 method is first order accurate, and the

RK-B2 method is second order accurate. Using 200 pressure equation iterations for RK-B1 and

RK-B2 has no impact on the order of accuracy and is omitted from Fig. 2.17. The number of pres-

sure equation iterations does have an impact on the RK-B3 order of accuracy; when five iterations

are used second order accuracy is achieved, but when 200 iterations are used RK-B3 becomes third

order accurate. Therefore, to achieve an order of accuracy higher than second order, the pressure

equation must be solved to a lower residual to accurately satisfy continuity during the RK stages.

To achieve first or second order accuracy, a few pressure equations iterations are sufficient.

Figure 2.18 shows the error for IRK-SIMPLER(B), with the number of pressure equation iter-

ations per stage in parentheses. These methods behave similar to RK-SIMPLER(B), with IRK-B1
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Figure 2.16: Temporal order of accuracy for RK-A and IRK-A.

being first order accurate and IRK-B2 being second order accurate. Again, using 200 pressure

equation iterations for IRK-B1 and IRK-B2 has no impact on the order of accuracy, and is omitted

from Fig. 2.18. The number of pressure equation iterations impacts IRK-B3, as was found for

RK-B3. With five iterations IRK-B3 is second order accurate, but with 200 iterations IRK-B3

becomes third order accurate. As seen in Figs. 2.17 and 2.18, for RK-B3 and IRK-B3 with 200

pressure equation iterations, the slope of the error becomes less at the smallest time steps, due to

numerical limits (i.e. the computations have become as accurate as possible given double precision

floating numbers).

Table 2.15 presents the order of accuracy for all methods tested. Although not shown, the order

of accuracy of the v-velocity component follows the u-velocity component. This is because the RK

methods used for the x and y momentum equations are the same, so the accuracy of both u and v

are the same.
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Figure 2.17: Temporal order of accuracy for RK-B.
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Figure 2.18: Temporal order of accuracy for IRK-B.



www.manaraa.com

67

Table 2.15: Temporal Order of Accuracy

Algorithm Order of Accuracy

S-FI O(∆t)

S-CN O(∆t2)

RK-A O(∆t)

RK-B1 O(∆t)

RK-B2 O(∆t2)

RK-B3(5) O(∆t2)

RK-B3(200) O(∆t3)

IRK-A O(∆t)

IRK-B1 O(∆t)

IRK-B2 O(∆t2)

IRK-B3(5) O(∆t2)

IRK-B3(200) O(∆t3)

2.4.2.1 Additional Iterations

RK-SIMPLER(A), IRK-SIMPLER(A), and IRK-SIMPLER(B) each have approximations in

their formulation that can be reduced through iterations. The RK-SIMPLER(A) and IRK-SIMPLER(A)

algorithms use sub-iterations, similar to SIMPLER, to solve the pressure equation and update the

RK form of the momentum equations multiple times in each time step. These iterations attempt

to improve the Crank-Nicolson form of the pressure equation by including implicit terms instead

of terms from the last time step. The error versus time step size for the RK-SIMPLER(A) and

IRK-SIMPLER(A) algorithms with iterations are shown in Figs. 2.19 and 2.20. The iterations do

not improve the order of accuracy of these methods, but the error at large time step sizes decreases

with iterations, making the first order slope present for higher time steps. Interestingly, the itera-

tions do not affect the error for small time steps, effectively only adding runtime to the simulation.

Therefore, additional iterations are not suggested.
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Figure 2.19: Temporal order of accuracy of RK-SIMPLER(A) with iterations.
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Figure 2.20: Temporal order of accuracy of IRK-SIMPLER(A) with iterations.
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The IRK-SIMPLER(B) algorithm is iterated each stage to update the implicit momentum coef-

ficients. These iterations occur after the implicit momentum update and do not require additional

implicit momentum equation solutions. The temporal order of accuracy of IRK-B2 with iterations

is shown in Fig. 2.21. The order of accuracy does not change with iterations; only the magnitude of

error decreases for all time steps. The other IRK-SIMPLER(B) variations follow a similar pattern.

The extra iterations in IRK-SIMPLER(B) to update the momentum coefficients reduce the error

for all time step sizes and are examined in the following section to examine see if efficiency can be

improved.
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Figure 2.21: Temporal order of accuracy of IRK-B2 with iterations.

2.4.3 Unsteady Simulation

2.4.3.1 Thin Flat Plate Normal to the Flow

To test the algorithms on an unsteady problem, laminar flow over a thin, flat plate normal to

the flow direction is simulated. A schematic of the flat plate problem is shown in Fig. 2.22. For
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moderate to high Reynolds numbers, vortices shed in a cyclical pattern from the top and bottom of

the flat plate. For the present simulations a Reynolds number of 17,800 is used (following Lestari

[53]). The grid is 172 by 172 with 20 grid cells along the height (L) and 10 grid cells along the

width (w) of the plate, which follows Purohit [52], and results in flow characteristics that agree

with previous simulation results [53]. The flat plate surfaces are no-slip walls, the left boundary

is uniform inflow, the right boundary is velocity outlet corrected for mass conservation, and the

top and bottom boundaries are inviscid walls. Simulations are started impulsively with initial

conditions of freestream velocity and uniform pressure field, and are run until t/(L/Ui) = 400. The

traditional SIMPLER algorithm, with Crank-Nicolson time integration, is the baseline case, with

the number of sub-iterations within each time step fixed at 20. For the sake of runtime, the pressure

equation is solved with five iterations for all first and second order accurate methods, while the

IRK-B3 method is tested with five and 200 total pressure equation iterations at each stage.

Ui
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w

Re =
ρUiL

µ

w

L
=

1

15
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y

Figure 2.22: Schematic of the thin flat plate normal to the flow problem.

The coefficients of drag (Cd) and lift (Cl) are plotted versus time in Fig.2.23. After some time,

the flat plate starts to shed vortices (seen as a steep rise in drag and oscillation in lift). Eventually,

lift and drag oscillate with a constant amplitude and frequency. Once the simulation reaches this

constant oscillatory pattern, the flow reaches unsteady convergence.

The time at which the flow reaches unsteady convergence varies with the algorithm used and

time step size. Figure 2.24 shows the coefficient of drag versus time for several different methods

and time step sizes. The time at which shedding starts changes between the different methods, and
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Figure 2.23: Time history of the coefficient of drag and lift on the flat plate.

even for the same method with different time step sizes. With increasing numbers of sub-iterations

and decreasing time step sizes, shedding occurs later in all figures.

Because different algorithms begin shedding at different times, the lift and drag coefficients do

not oscillate at the same simulation time. To compare the results for the different algorithms, the

data is shifted so time equals zero for a peak of lift or drag coefficient. After time shifting the data,

the different algorithms fall on top of each other (Fig. 2.25).

A measure of unsteady vortex shedding is the Strouhal number (Sr = Lf/Ui), where f is the

frequency of shedding. When a vortex sheds from the top of the flat plate, there is a peak in drag

and lift. When a vortex sheds from the bottom of the flat plate, there is a peak in drag and a trough

in lift. Therefore, the frequency of lift is half of drag, and the frequency of shedding is calculated by

finding the period between alternating peaks of drag or by finding the period between consecutive

peaks of lift.



www.manaraa.com

72

1.5

2

2.5

3

Cd

∆t = 1E-5 s

∆t = 1E-6 s

∆t = 1E-7 s

S–CN
30 Sub-Ite.

1.5

2

2.5

Cd

10 Sub-Ite.

30 Sub-Ite.

50 Sub-Ite.

S–CN
∆t = 1E-6 s

1.5

2

2.5

Cd

∆t = 1E-6 s

∆t = 1E-7 s

∆t = 5E-8 s

RK–A

0 0.05 0.1

time (s)

1

1.5

2

2.5

Cd

∆t = 1E-6 s

∆t = 1E-7 s

∆t = 5E-8 s

IRK–A2

Figure 2.24: Drag history of flat plate with different methods.
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Figure 2.25: Coefficient of drag and lift in the region of cyclic shedding of vortices.

Figure 2.26 shows the average coefficient of drag for different algorithms over a range of time

step sizes, with IRK-B methods using Nup = 1. As time step size decreases, all methods approach

an average coefficient of drag around 2.3385. C-N and IRK-B1 both converge for large time step

sizes, but are not accurate. RK and IRK-A converge only for small time step sizes, but are accurate

for all allowable time step sizes. IRK-B2 and IRK-B3 converge for relatively large time step sizes

and are accurate for all time step sizes allowed.

Table 2.16 shows the maximum allowable time step (∆tmax), as well as the average coefficient of

drag, Cd, and Strouhal number using the maximum allowable time step size. Table 2.16 also shows

the maximum time step for which the average coefficient of drag is 2.3385±0.002, or within 0.1%

of the converged value (defined as the accurate time step size ∆tAcc). The runtime and speedup

using the accurate time step sizes are also listed in the table. IRK-SIMPLER variation B is tested

with different numbers of momentum coefficient updates (Nup = 1, 2, 3). Using Nup > 1 allows

for larger ∆tmax and ∆tAcc than using Nup = 1 for all methods except IRK-B1. For all methods,

the Strouhal number is 0.15 when the average drag coefficient falls within the desired accuracy.
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Figure 2.26: Average coefficient of drag for different time steps sizes3.

Previous computational [53],[54],[55] and experimental [55] results on the flat plate indicate the

average coefficient of drag and Strouhal numbers are in good agreement with current results.

2.4.4 Algorithm Conclusions and Recommendations

Both the RK-SIMPLER and IRK-SIMPLER algorithms show improvement over the traditional

SIMPLER algorithm with C-N time integration. The explicit RK-SIMPLER algorithm requires

relatively few computations per time step and, despite the low time step required to converge, result

in accurate solutions in less runtime than SIMPLER. Variation A with ERK-LS4 is only first order

accurate in time, but, compared to the other RK-SIMPLER methods, results in the lowest runtime

to achieve a time accurate solution of the flat plate problem. The RK-SIMPLER(B) algorithm

achieves the same order of accuracy as the ERK method chosen, but the additional computations

3IRK-B results using Nup = 1.
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Table 2.16: Flat plate results.

Nup
∆tmax
L/Ui

Cd at Sr at ∆tAcc
L/Ui

CPU Time at Speedup4

∆tmax ∆tmax ∆tAcc (min.) at ∆tAcc
S-CN — 0.178 2.528 0.149 0.010 317.41 1.0

RK-A — 0.004 2.339 0.150 0.004 20.54 15.5

RK-B1 — 0.002 2.340 0.150 0.002 40.21 7.9

RK-B2 — 0.002 2.338 0.150 0.002 57.03 5.6

RK-B3 — 0.002 2.333 0.150 0.002 87.93 3.6

IRK-A1 — 0.012 2.341 0.149 0.010 11.55 27.5

IRK-A2 — 0.012 2.341 0.149 0.010 18.23 17.4

IRK-A1-AF — 0.012 2.341 0.149 0.010 8.38 37.9

IRK-A2-AF — 0.012 2.341 0.149 0.010 10.17 31.2

IRK-B1

1 0.099 2.203 0.146 0.002 68.42 4.6

2 0.198 1.991 0.137 0.002 103.67 3.1

3 0.593 1.607 0.107 0.002 129.66 2.4

IRK-B2

1 0.079 2.338 0.150 0.079 3.65 87.0

2 0.198 2.343 0.150 0.119 3.15 100.8

3 0.198 2.344 0.150 0.119 5.06 62.7

IRK-B3(5)

1 0.040 2.339 0.150 0.040 11.59 27.4

2 0.138 2.335 0.150 0.119 4.53 70.1

3 0.198 2.334 0.150 0.138 6.51 48.8

IRK-B3(200)

1 0.040 2.339 0.150 0.040 125.98 2.5

2 0.198 2.337 0.150 0.198 54.20 5.9

3 0.593 2.330 0.149 0.198 73.20 4.3

required make the algorithm less efficient than RK-SIMPLER(A). Variation A is the most efficient

method and is recommended. It is used for all future RK-SIMPLER simulations unless otherwise

noted.

The implicit IRK-SIMPLER algorithm allows for larger time steps than RK-SIMPLER and,

although more computations are required, achieves time accurate results in less runtime. IRK-

SIMPLER(A) is only first order accurate in time, but requires less runtime than RK-SIMPLER(A)

or RK-SIMPLER(B). IRK-SIMPLER(B) achieves the same order of accuracy as the DIRK method

4Speedup is relative to C-N.
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used. IRK-B2 results in the lowest runtime of all the methods for the flat plate case and is

recommended. It is used for all future IRK-SIMPLER simulations unless otherwise noted.

To achieve third order accuracy with RK-SIMPLER(B) and IRK-SIMPLER(B), more iterations

are required. More iterations lowers the efficiency of the algorithm, and results in longer runtime

compared to the second order accurate methods.
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CHAPTER 3. UNSTRUCTURED GRID FORMULATION

For many problems, creating a structured grid is challenging and time consuming, particularly

for problems with complex geometries. To alleviate this challenge, unstructured grids are used to

fill the domain using arbitrary shaped grid cells. The IRK-SIMPLER algorithm has been tested

and validated on the simple case of structured Cartesian grids, but the behavior of IRK-SIMPLER

on unstructured grids is of interest. To test IRK-SIMPLER, two-dimensional, triangular vertex-

centered grids and three-dimensional, tetrahedral vertex-centered grids are used. This chapter

covers the formulation of IRK-SIMPLER on these grids and results comparing IRK-SIMPLER to

SIMPLER and RK-SIMPLER.

3.1 Two-Dimensional Triangular Grid Formulation

Rewriting the governing equations for incompressible fluid flow as

∂(ρ~V )

∂t
+∇ · (ρ~V ~V ) =−∇p+∇ · (µ∇~V ) + ~S (3.1)

∇ · (ρ~V ) =0 . (3.2)

In two dimensions, a triangular, vertex-centered, median-dual control volume formulation is used

following the work of Maresca [56] and Lestari [53] (see Fig. 3.1). Each triangle is an element

characterized by three nodes, three edges, and three interior faces. Figure 3.2 shows a triangular

element with the nodes labeled ni, the edge midpoints labeled ei, the element center labeled c, and

the interior face midpoints labeled mi. Each node has a control volume made up of quadrilateral

areas from all the triangular elements it connects to. The faces of the control volumes are the

interior faces of the elements (lines connecting edge midpoints to element centroids) as well as

the element edges in the case of boundary elements (Fig. 3.3). For this formulation, density and

viscosity are constant within each triangular element and pressure varies linearly.
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Figure 3.1: Triangular median-dual control volume.
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Figure 3.2: Triangular element.
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Figure 3.3: Control volume of a boundary node with boundary faces at triangle edges.

3.1.1 Interpolation of Velocity

The interpolation method of Prakash [31] interpolates the velocities over each triangular element

to avoid spurious pressure oscillation when developing the pressure equation (a common problem

when using collocated grids). The velocity interpolation uses fully discrete momentum equations

to interpolate the velocity components to the control volume faces. Starting with the x momentum

equation in the form

un = ûn − (du)n

(
∂p

∂x

)
n

, (3.3)
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where the index n represents the node of interest. The details of how to get all the terms in this

equation is discussed later for each algorithm, but if we assume this form, an artificial velocity term

(ũ) is defined by

ũe−n = ûn − (du)n

(
∂p

∂x

)
e

, (3.4)

where the index e represents the element of interest, and the subscript on the artificial velocity e−n

represents the value at node n for the specific element e. The artificial velocity at a given node

is different when looking at each element because the element pressure gradient is used instead of

the nodal gradient. The linear interpolation of the artificial velocity across the triangular element

is used any time a velocity value is needed on the interior of a triangle. This interpolation is

particularly important when deriving the pressure equation, where checkerboarding of pressure can

occur if the same interpolation is used for both pressure and velocity. To find the artificial velocity

in the interior of each element, a linear interpolation is used (using the notation from Fig. 3.2).

ũe1 =
1

2
(ũn1 + ũn2) ũe2 =

1

2
(ũn2 + ũn3) ũe3 =

1

2
(ũn3 + ũn1) (3.5)

ũc =
1

3
(ũn1 + ũn2 + ũn3) (3.6)

ũm1 =
1

2
(ũe1 + ũc) ũm2 =

1

2
(ũe2 + ũc) ũm3 =

1

2
(ũe3 + ũc) (3.7)

The y direction artificial velocity is interpolated in the same manner with

ṽe−n = v̂n − (dv)n

(
∂p

∂y

)
e

. (3.8)

This method of interpolation, called equal order interpolation by Prakash [31], is similar to

Rhie-Chow interpolation [57] and Modified Momentum Interpolation Method [58]. These methods

all attempting to avoid pressure checkerboarding that occurs when collocated pressure and velocity

are both interpolated using the same method. When using the interpolation stencil described above,

at the first time step (when the domain is initialized) setting û = uinit, v̂ = vinit, and du = dv = 0

works well. The quantities û, v̂, du and dv are updated every time step, each sub-iteration in

SIMPLER, and each time momentum coefficients are updated in IRK-SIMPLER(B).
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3.1.2 Triangular Element Momentum Flux Computation

The momentum fluxes are calculated using an interpolation shape function developed by Baliga

[30], which is similar to the Power Law scheme that Patankar [5] developed for structured grids.

The unstructured scheme of Baliga solves the two-dimensional,steady convection-diffusion equation

for a general variable φ with no source, given by

∂ρueφ

∂x
+
∂ρveφ

∂y
− ∂

∂x

[
µ
∂φ

∂x

]
− ∂

∂y

[
µ
∂φ

∂y

]
= 0 , (3.9)

where ue and ve are the element centroid velocity components for x and y directions, respectively.

ue =
1

3
(un1 + un2 + un3) ve =

1

3
(un1 + un2 + un3) (3.10)

A rotational transformation aligns a new coordinate direction, X, to the element velocity di-

rection, Ue =
√
u2
e + v2

e (see Fig. 3.4).

x

y

Y
X

U

θ

Figure 3.4: Triangular element with the element velocity vector shown.

The local coordinate system is found by translating the origin to the element centroid and

rotating the X direction to match the element average velocity vector direction. The rotation

matrix coefficients for angle θ are given by

cos θ =
ue
Ue

sin θ =
ve
Ue

. (3.11)
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In the event Ue = 0, the rotation angle is set to zero (i.e. cos θ = 1 and sin θ = 0). The transfor-

mation from (x, y) to the element local coordinate system is given by

X = (x− xe) cos θ + (y − ye) sin θ (3.12)

Y = −(x− xe) sin θ + (y − ye) cos θ , (3.13)

and the transformation for velocity is

U = u cos θ + v sin θ (3.14)

V = −u sin θ + v cos θ . (3.15)

The convection-diffusion equation is written for the new coordinate system as

∂ρUeφ

∂X
− ∂

∂X

[
µ
∂φ

∂X

]
− ∂

∂Y

[
µ
∂φ

∂Y

]
= 0 . (3.16)

To interpolate across the triangle, a shape function is assumed that varies linearly in the Y direction

and varies by some function ξ(X) in the X direction.

φ = Aξ(X) +BY + C , (3.17)

where the values of A, B, and C are constant for each element and are given in summation form as

A = Liφi B = Miφi C = Niφi , (3.18)

with i = 1, 2, 3 for the three triangle vertices. The terms L, M , and N are given by

L1 = (Y2 − Y3)/∆ L2 = −(Y1 − Y3)/∆ L3 = (Y1 − Y2)/∆

M1 = −(ξ2 − ξ3)/∆ M2 = (ξ1 − ξ3)/∆ M3 = −(ξ1 − ξ2)/∆ (3.19)

N1 = (ξ2Y3 − ξ3Y2)/∆ N2 = −(ξ1Y3 − ξ3Y1)/∆ N3 = (ξ1Y2 − ξ2Y1)/∆ ,

with

∆ = ξ1(Y2 − Y3)− ξ2(Y1 − Y3) + ξ3(Y1 − Y2) . (3.20)

The exact solution of ξ(X) is the exponential function [30]

ξ(X) =
∆X

Pe

[
exp

(
Pe(X −Xmax)

∆X

)
− 1

]
, (3.21)
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with

∆X = Xmax −Xmin Pe =
ρUe∆X

µ
(3.22)

Xmax = max(Xn1 .Xn2 , Xn3) Xmin = min(Xn1 .Xn2 , Xn3) . (3.23)

Because exponential functions are computationally costly to execute, a power law representation

of the function ξ(X) is used [30].

ξ(X) =
X −Xmax

Pe + J0, (1− 0.1|Pe|)5K
(3.24)

This scheme of Baliga is called the Power Law scheme for unstructured triangular grids, and

has also been successfully used by Maresca [56] and Lestari [53].

The interpolation of φ is rewritten in summation form as

φ = [Liξ(X) +MiY +Ni]φi , (3.25)

with derivatives (using the exponential function 3.21)

∂φ

∂X
=

[
ρUe
µ
ξ + 1

]
Liφi (3.26)

∂φ

∂Y
=Miφi . (3.27)

In this summation form, repeated indices represent a summation over the three nodes (i.e. Liφi =

L1φ1 + L2φ2 + L3φ3).

The total convective and diffusive momentum equation flux is written as

Jφ−X = ρUφ− µe
∂φ

∂X

= fiφi (3.28)

Jφ−Y = ρV φ− µe
∂φ

∂Y

= giφi , (3.29)

with

fi = ρ [(U − Ue)Liξ(X) + U(MiY +Ni)]− µLi (3.30)

gi = ρV [Liξ(X) +MiY +Ni]− µMi . (3.31)
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The integrated flux across the interior face is given by∫
fi

~Jφ · d ~A =

∫
fi

(Jφ−XdAX + Jφ−Y dAY ) , (3.32)

where AX and AY are the areas in the X and Y direction for face fi. The area vector is defined to

points in the direction from node 1 to 2 for face 1, from node 2 to 3 for face 2, and from node 3 to

1 for face 3.

(∆AX)f1 = Yc − Ye1 (∆AY )f1 = Xe1 −Xc (3.33)

(∆AX)f2 = Yc − Ye2 (∆AY )f2 = Xe2 −Xc (3.34)

(∆AX)f3 = Yc − Ye3 (∆AY )f3 = Xe3 −Xc (3.35)

Simpson’s quadrature rule (which is equivalent to the Gauss-Lobatto quadrature rule for three

points) is used to integrate over each face fi.∫
fi

~Jφ · d ~A =
[
Jφ−X(ei) + 4Jφ−X(mi) + Jφ−X(c)

](∆AX)fi
6

+
[
Jφ−Y (ei) + 4Jφ−Y (mi) + Jφ−Y (c)

](∆AY )fi
6

(3.36)

=
(

[f1(ei) + 4f1(mi) + f1(c)]
(∆AX)fi

6
+ [g1(ei) + 4g1(mi) + g1(c)]

(∆AY )fi
6

)
φ1

+
(

[f2(ei) + 4f2(mi) + f2(c)]
(∆AX)fi

6
+ [g2(ei) + 4g2(mi) + g2(c)]

(∆AY )fi
6

)
φ2

+
(

[f3(ei) + 4f3(mi) + f3(c)]
(∆AX)fi

6
+ [g3(ei) + 4g3(mi) + g3(c)]

(∆AY )fi
6

)
φ3

(3.37)

=Fi,jφj , (3.38)

with summation over the index j = 1, 2, 3. The integrated flux coefficient is defined by

Fi,j = [fj(ei) + 4fj(mi) + fj(c)]
(∆AX(fi

6
+ [gj(ei) + 4gj(mi) + gj(c)]

(∆AY )fi
6

. (3.39)

Equation 3.38 gives the total flux through control volume face fi as a function of coefficients

Fi,j and the node values φj . For each triangle there are three interior control volume faces that

use the same shape function. The fluxes for all interior control volume faces are found by looping
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through all triangles, calculating the flux through all three control volume faces, and adding the

flux to the momentum coefficients if the face area points out of the control volume or subtracting

the flux if the face area points into the control volume. The procedure for adding fluxes into the

momentum coefficients is as follows.

For n = 1, nele

(aP )1 = (aP )1 + F1,1 − F3,1

(anb−2)1 = (anb−2)1 − F1,2 + F3,2

(anb−3)1 = (anb−3)1 − F1,3 + F3,3

(aP )2 = (aP )2 + F2,2 − F1,2

(anb−1)2 = (anb−1)2 − F2,1 + F1,1

(anb−3)2 = (anb−3)2 − F2,3 + F1,3

(aP )3 = (aP )3 + F3,3 − F2,3

(anb−1)3 = (anb−1)3 − F3,1 + F2,1

(anb−2)3 = (anb−2)3 − F3,2 + F2,2

Here (aP )i is the central coefficient for node i, and (anb−j)i is the neighbor coefficient for the node

i equation with the local node j as the neighbor node. The form of the momentum equations is

(aP )iφi =

nnbi∑
j=1

(anb−j)iφnb−j + bi . (3.40)

The overall procedure for finding the total convective-diffusive flux across the interior control

volume faces is as follows.

1. Using the element centroid velocity, find the rotation angle coefficients (Eq. 3.11).

2. Calculate the artificial velocities defined in Eqs. 3.4 and 3.8, and then interpolate those

velocities to the seven integration points ei, mi, and c in Fig. 3.2.

3. Transform to local coordinate system, and find U , V , X, and Y at the integration points.
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4. Calculate ξ(X) at the integration points.

5. Calculate fi and gi at the integration points using Eqs. 3.107 and 3.107.

6. Calculate the integrated flux coefficients Fi,j at all three interior faces, i = 1, 2, 3, (for all

three nodes j = 1, 2, 3) using Eq. 3.39.

7. Add the flux coefficients into the momentum coefficients using the procedure given above (the

coefficients are the same for x and y momentum equations and do not need to be calculated

twice).

3.1.2.1 Boundary Fluxes and Boundary Conditions for the Momentum Equation

The boundary fluxes are computed at the triangle edges, not on the interior faces (see Fig. 3.3).

If the mass flux leaving the boundary edge j is ṁj , then the momentum equation for a boundary

node is as follows. (aP )i +

nbndedgi∑
j=1

ṁj

φi =

nnbi∑
n=1

(anb−n)iφnb−n + bi − Jbnd , (3.41)

where nbndedgi is the number of boundary edges for the node i control volume, and Jbnd is the

total diffusive momentum flux leaving the domain through all the boundary edges of node i. If the

value of φi is set using a Dirichlet boundary condition, then Eq. 3.41 is used to calculate the total

diffusive flux Jbnd. If φi is unknown, and the diffusive and convective fluxes on the boundary are

known, then Eq. 3.41 is used to calculate the value of φi.

3.1.3 Triangular Element Shape Function for Pressure

The linear interpolation of pressure is accomplished with a shape function of the form

p(x, y) = Ax+By + C . (3.42)

The terms (A,B,C) are coefficients for each element given in summation notation for i = 1, 2, 3 as

A = Lipi B = M ipi C = N ipi . (3.43)
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The (L,M,N) coefficients are functions only of the element geometry and are as follows.

L1 = (y2 − y3)/∆ L2 = −(y1 − y3)/∆ L3 = (y1 − y2)/∆

M1 = −(x2 − x3)/∆ M2 = (x1 − x3)/∆ M3 = −(x1 − x2)/∆ (3.44)

N1 = (x2y3 − x3y2)/∆ N2 = −(x1y3 − x3y1)/∆ N3 = (x1y2 − x2y1)/∆ ,

with

∆ = x1(y2 − y3)− x2(y1 − y3) + x3(y1 − y2) . (3.45)

The shape function coefficients for pressure have the same form as the momentum flux shape

function, but with ξ = x and Y = y. The momentum flux shape functions are dependent on the

local flow and need to be calculated each time the flow changes. The pressure shape functions are

only functions of the grid geometry and are calculated once, assuming the grid does not change.

The shape function for each element is written as

p(x, y) =
(
Lix+M iy +N i

)
pi . (3.46)

In this form it becomes clear that the gradient of pressure is constant across each element, with

components given by

∂p

∂x
= Lipi

∂p

∂y
= M ipi . (3.47)

The above formulation gives the element pressure gradient. To find the pressure gradient at each

node, the pressure gradient is integrated over the node’s control volume and divided by the control

volume’s total volume. The integration used is as follows.∫
CV

∂p

∂x
d∀ =

nnb−ele∑
e=1

∆∀e
3

(
∂p

∂x

)
e

(3.48)

The pressure gradient component is computed from(
∂p

∂x

)
n

=
1

∆∀n

nnb−ele∑
e=1

∆∀e
3

(
∂p

∂x

)
e

=
1

∆∀n

nnb−ele∑
e=1

∆∀e
3

(
L1p1 + L2p2 + L3p3

)
e
, (3.49)
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with

∆∀n =

nnb−ele∑
e=1

∆∀e
3

, (3.50)

where nnb− ele is the number of neighbor elements that contain node n, or all the elements that

make up the control volume for node n. The gradient in the y direction follows similarly.(
∂p

∂y

)
n

=
1

∆∀n

nnb−ele∑
e=1

∆∀e
3

(
M1p1 +M2p2 +M3p3

)
e

(3.51)

3.1.4 Integration of Pressure and Other Source Terms

Looking back at the momentum equation (Eq. 3.1), the convective and diffusive terms are

known, but the unsteady, pressure, and source terms are yet to be integrated. The pressure and

source terms are constant over each triangular element, and the x and y momentum equations are

given in summation form as

−∂p
∂x

+ Su = −Lipi + (Su)e (3.52)

−∂p
∂y

+ Sv = −M ipi + (Sv)e , (3.53)

where (Su)e and (Sv)e are the source terms evaluated for the triangular element e, and i is the

index for summation over the three nodes on element e. The integration of the source terms results

in ∫
e
(−∂p
∂x

+ Su)d∀ =
[
−Lipi + (Su)e

]
∆∀e (3.54)∫

e
(−∂p
∂y

+ Sv)d∀ =
[
−M ipi + (Sv)e

]
∆∀e . (3.55)
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Each control volume is made up of one third of neighboring element volumes. Therefore, each

control volume will have one third of the element source term added.

(bu)1 = (bu)1 +
1

3

[
−Lipi + (Su)e

]
∆∀e

(bu)2 = (bu)2 +
1

3

[
−Lipi + (Su)e

]
∆∀e

(bu)3 = (bu)3 +
1

3

[
−Lipi + (Su)e

]
∆∀e

(bv)1 = (bv)1 +
1

3

[
−M ipi + (Sv)e

]
∆∀e

(bv)2 = (bv)2 +
1

3

[
−M ipi + (Sv)e

]
∆∀e

(bv)3 = (bv)3 +
1

3

[
−M ipi + (Sv)e

]
∆∀e

3.1.5 Discretized Equations

After discretizing the momentum equation (Eq. 3.1) over triangular elements and integrating

over the control volume, the equations have the following form.

ρ∆∀du
dt

=
nnb∑
nb=1

au−nbunb − au−PuP + bu −∆∀∂p
∂x

(3.56)

ρ∆∀dv
dt

=
nnb∑
nb=1

av−nbvnb − av−PuP + bv −∆∀∂p
∂y

(3.57)

Here the source terms bu and bv do not contain pressure gradient terms. The momentum equations

are integrated in time with any number of methods discussed in Chapter 2, and rearranged into

the following form.

a′u−PuP =

nnb∑
nb=1

a′u−nbunb + b′u − d′u∆∀∂p
∂x

(3.58)

a′v−P vP =

nnb∑
nb=1

a′v−nbvnb + b′v − d′v∆∀
∂p

∂x
, (3.59)

where the coefficients contain unsteady factors and potentially relaxation factors. The coefficients

for each specific algorithm are determine in Chapter 2. The form of the momentum equations
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required to derive the pressure equation is as follows.

uP = û− du
∂p

∂x
vP = v̂ − dv

∂p

∂y
, (3.60)

where

û =

∑nnb
nb=1 a

′
u−nbunb + b′u
a′u−P

du =
d′u∆∀
a′u−P

(3.61)

v̂ =

∑nnb
nb=1 a

′
v−nbvnb + b′v
a′v−P

dv =
d′v∆∀
a′v−P

. (3.62)

The continuity equation (Eq. 3.2) is integrated over the two-dimensional control volume sur-

rounding the primary grid point (P ) to yield the following algebraic equation.

nfaces∑
f=1

(ρ~V ) · ~A = 0 (3.63)

The summation is over all control volume faces surrounding the point P .

3.1.6 Generic Pressure Equation

When developing the pressure equation, the velocity interpolation discussed in Sec. 3.1.1 is

again used to avoid spurious pressure oscillations. The form of the momentum equations that are

interpolated and substituted into the mass conservation equations are

ũ = û− du
[
∂p

∂x

]
e

ṽ = v̂ − dv
[
∂p

∂y

]
e

, (3.64)

rather than Eqs. 2.80 and 2.81 used in the staggered structured grid of Sec. 2.3. Equation 3.64

includes pseudo-velocity and pressure coefficient terms (du and dv) evaluated at nodes, but the

pressure gradient is evaluated for each triangular element and is a function of the nodal pressure

values.

The time integration and relaxation required varies between the SIMPLER, RK-SIMPLER,

and IRK-SIMPLER algorithms (shown in Sec. 2.3); however, once the equation is in the form of

Eq. 3.64, the algorithm steps are the same.
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Equation 3.64 is used to linearly interpolate the velocity across the triangular element. The

integrated mass flux through control volume faces are computed using the velocity at the midpoint

of the face (mi in Fig. 3.2). The discrete continuity equation becomes

nfaces∑
f=1

ρ
[
ũm(∆Ax)f + ṽm(∆Ay)f

]
= 0 , (3.65)

where ũm and ṽm are the artificial velocity components interpolated to the midpoint of the face

and (∆Ax)f and (∆Ay)f are the area components for the face f . This equation is used to find the

mass residual for a given velocity and pressure field. Recalling that interpolation of velocity uses

a linear interpolation of û, v̂, du, and dv across the triangle while the pressure gradient terms are

constant, the continuity equation becomes

nfaces∑
f=1

ρ
[ (
ûm − (du)mLipi

)
(∆Ax)f +

(
v̂m − (dv)mM ipi

)
(∆Ay)f

]
= 0 , (3.66)

where the pressure gradient for each element is given in summation notation. Rearranging leads to

nfaces∑
f=1

[
ρ (ûm(∆Ax)f + v̂m(∆Ay)f )

−ρ
[
(du)mL1(∆Ax)f + (dv)mM1(∆Ay)f

]
p1

−ρ
[
(du)mL2(∆Ax)f + (dv)mM2(∆Ay)f

]
p2

−ρ
[
(du)mL3(∆Ax)f + (dv)mM3(∆Ay)f

]
p3

]
= 0 , (3.67)

or

nfaces∑
f=1

[
Ĝf +Gi,f pi

]
= 0 . (3.68)

with summation over i = 1, 2, 3. The coefficients are defined by

Ĝf = ρ [ûm(∆Ax)f + v̂m(∆Ay)f ]

Gi,f = −ρ
[
(du)mLi(∆Ax)f + (dv)mM i(∆Ay)f

]
. (3.69)
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Again using the convention that area vectors point from node 1 to 2, 2 to 3, and 3 to 1, the pressure

coefficients and sources are set by looping through all elements as follows.

For n = 1, nele

(ap−P )1 = (aP )1 +G1,1 −G3,1

(ap−nb−2)1 = (anb−2)1 −G1,2 +G3,2

(ap−nb−3)1 = (anb−3)1 −G1,3 +G3,3

(bp)1 = (bp)1 − Ĝ1 + Ĝ3

(ap−P )2 = (aP )2 +G2,2 −G1,2

(ap−nb−1)2 = (anb−1)2 −G2,1 +G1,1

(ap−nb−3)2 = (anb−3)2 −G2,3 +G1,3

(bp)2 = (bp)2 − Ĝ2 + Ĝ1

(ap−P )3 = (aP )3 +G3,3 −G2,3

(ap−nb−1)3 = (anb−1)3 −G3,1 +G2,1

(ap−nb−2)3 = (anb−2)3 −G3,2 +G2,2

(bp)3 = (bp)3 − Ĝ3 + Ĝ2 ,

where the subscripts on the pressure coefficients and sources (ap and bp) are for the local node

number, the subscripts for Gi,f represent the local node i and the local face f , and the subscript

on Ĝ represents the local face number.

The pressure equation is derived from mass conservation, and boundary conditions are included

in the pressure source term by adding any mass flux leaving the domain through the boundary

edges.

(bp)i = (bp)i +

nbndedgi∑
j=1

ṁj (3.70)

With the discretization, integration, and coefficients defined for the momentum and pressure

equations, the algorithms follow the same procedure given in Sec. 2.3.
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3.2 Three-Dimensional Tetrahedral Grid Formulation

In three dimensions, a tetrahedral, vertex-centered, median-dual control volume formulation is

used following Guntupalli [59]. Each tetrahedral element contains four nodes, four faces, six edges,

and six interior faces. Figures 3.5 and 3.6 show a tetrahedral element with nodes labeled ni, faces

centers labeled fi, and edge centers labeled ei. Each interior control volume face is comprised of two

adjacent triangular faces, with each triangular face defined by one edge centroid, one face centroid,

and the element centroid (c). Figure 3.7 shows three of these triangular faces. The two triangular

faces that share an edge centroid define the control volume face between the two nodes that make

up the shared edge. These two triangular faces are equal in both magnitude and direction. The

points that define the six interior control volume faces for a tetrahedral element are given in Table

3.1. The area of the faces are found by taking the cross product of the vector from the lower left

point to the upper left point crossed with the vector from the lower left point to the lower right

point. For example, ~A1 = (~rc−~rf1)× (~re1 −~rf1) where ~rp is the vector from the origin to the point

p.

n1

n2

n3

n4

f1

f2

f3
f4

Figure 3.5: Tetrahedral element faces.

n1

n2

n3

n4

e1

e2

e3

e4

e5
e6

Figure 3.6: Tetrahedral element edges.
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n1

n2

n3

e1

n4

c

e2

e3

Figure 3.7: Three triangles that are part of tetrahedral interior control volume faces.

Table 3.1: Tetrahedral interior control volume faces1.

Interior Area Vector Area Vector Lower Lower Upper Upper
Face # Pointing Pointing Left Right Right Left

Out Of Into Point Point Point Point
1 n1 n2 f1 e1 f2 c
2 n2 n3 f1 e2 f4 c
3 n3 n1 f1 e3 f3 c
4 n1 n4 f2 e4 f3 c
5 n2 n4 f4 e5 f2 c
6 n3 n4 f3 e6 f4 c

As in the two-dimensional case of triangular elements, the density and viscosity are constant

within each triangular element and pressure varies linearly.

1Area vectors point into the page for the given orientation.
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3.2.1 Interpolation of Velocity

The velocity interpolation described in Sec. 3.1.1 is used with

ũe−n = ûn − (du)n

(
∂p

∂x

)
e

(3.71)

ṽe−n = v̂n − (dv)n

(
∂p

∂y

)
e

(3.72)

w̃e−n = ŵn − (dw)n

(
∂p

∂z

)
e

, (3.73)

where the values of û, v̂, ŵ, du, dv, and dw are determined by the fully discrete momentum

equations at each node. The artificial velocities are interpolated linearly (only ũ is shown but all

linear interpolations follow the same pattern).

ũe1 =
1

2
(ũn1 + ũn2) ũe2 =

1

2
(ũn2 + ũn3) ũe3 =

1

2
(ũn3 + ũn1) (3.74)

ũe4 =
1

2
(ũn1 + ũn4) ũe5 =

1

2
(ũn2 + ũn4) ũe6 =

1

2
(ũn3 + ũn4) (3.75)

ũc =
1

4
(ũn1 + ũn2 + ũn3 + ũn4) (3.76)

ũf1 =
1

3
(ũn1 + ũn2 + ũn3) ũf2 =

1

3
(ũn1 + ũn2 + ũn4) (3.77)

ũf3 =
1

3
(ũn1 + ũn3 + ũn4) ũf4 =

1

3
(ũn2 + ũn3 + ũn4) (3.78)

3.2.2 Tetrahedral Element Momentum Flux Computation

The momentum fluxes for tetrahedral elements are calculated similarly to the triangular ele-

ments, with a Power Law scheme from Baliga [30]. The scheme starts with the three-dimensional,

steady convection-diffusion equation for a general variables φ with no source, given by

∂ρueφ

∂x
+
∂ρveφ

∂y
+
∂ρweφ

∂z
− ∂

∂x

[
µ
∂φ

∂x

]
− ∂

∂y

[
µ
∂φ

∂y

]
− ∂

∂z

[
µ
∂φ

∂z

]
= 0 , (3.79)
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where ue, ve, and we are the element centroid velocity components for x, y, and z directions

respectively.

ue =
1

4
(un1 + un2 + un3 + un4) (3.80)

ve =
1

4
(vn1 + vn2 + vn3 + vn4) (3.81)

we =
1

4
(wn1 + wn2 + wn3 + wn4) (3.82)

A rotational transformation then aligns a new coordinate direction, X, to the element velocity

direction, Ue =
√
u2
e + v2

e + w2
e (see Fig. 3.8).

c

x

z

y

X

Z

Y
Ue

x

z

y

Ue

θ

φ

Figure 3.8: Tetrahedral element rotation to local coordinates.

The local coordinate system is found by translating the origin to the element centroid and

rotating the new X direction to point in the direction of the element average velocity vector. The

rotation matrix coefficients for angles φ and θ are given by

cosφ =
ve
Ue

sinφ =

√
u2
e + w2

e

Ue
(3.83)

cos θ =
ue

Ue sinφ
sin θ =

we
Ue sinφ

. (3.84)
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In the event Ue = 0, the rotation angles are set such that sinφ = cos θ = 1 and cosφ = sin θ = 0.

The transformation from (x, y, z) to the element local coordinate system is

X =
[
(x− xe) cos θ + (z − ze) sin θ

]
sinφ+ (y − ye) cosφ (3.85)

Y = −
[
(x− xe) cos θ + (z − ze) sin θ

]
cosφ+ (y − ye) sinφ (3.86)

Z = −(x− xe) sin θ + (z − ze) cos θ , (3.87)

and the transformation for velocity is

U =
[
u cos θ + w sin θ

]
sinφ+ v cosφ (3.88)

V = −
[
u cos θ + w sin θ

]
cosφ+ v sinφ (3.89)

W = −u sin θ + w cos θ . (3.90)

The convection diffusion equation is written for the new coordinate system.

∂ρUeφ

∂X
− ∂

∂X

[
µ
∂φ

∂X

]
− ∂

∂Y

[
µ
∂φ

∂Y

]
− ∂

∂Z

[
µ
∂φ

∂Z

]
= 0 (3.91)

To interpolate across the tetrahedron, a shape function is assumed that varies linearly in the Y

and Z directions and by some function ξ(X) in the X direction.

φ = Aξ(X) +BY + CZ +D (3.92)

where the values of A, B, C, and D are constant for each element and are given in summation form

as

A = Liφi B = Miφi C = Niφi D = Oiφi , (3.93)

with i = 1, 2, 3, 4 for each tetrahedron vertex. The terms L, M , N , and O are given by
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L1 =
[
Y2(Z3 − Z4)− Y3(Z2 − Z4) + Y4(Z2 − Z3)

]
/∆

L2 = −
[
Y1(Z3 − Z4)− Y3(Z1 − Z4) + Y4(Z1 − Z3)

]
/∆

L3 =
[
Y1(Z2 − Z4)− Y2(Z1 − Z4) + Y4(Z1 − Z2)

]
/∆

L4 = −
[
Y1(Z2 − Z3)− Y2(Z1 − Z3) + Y3(Z1 − Z2)

]
/∆ (3.94)

M1 = −
[
ξ2(Z3 − Z4)− ξ3(Z2 − Z4) + ξ4(Z2 − Z3)

]
/∆

M2 =
[
ξ1(Z3 − Z4)− ξ3(Z1 − Z4) + ξ4(Z1 − Z3)

]
/∆

M3 = −
[
ξ1(Z2 − Z4)− ξ2(Z1 − Z4) + ξ4(Z1 − Z2)

]
/∆

M4 =
[
ξ1(Z2 − Z3)− ξ2(Z1 − Z3) + ξ3(Z1 − Z2)

]
/∆ (3.95)

N1 =
[
ξ2(Y3 − Y4)− ξ3(Y2 − Y4) + ξ4(Y2 − Y3)

]
/∆

N2 = −
[
ξ1(Y3 − Y4)− ξ3(Y1 − Y4) + ξ4(Y1 − Y3)

]
/∆

N3 =
[
ξ1(Y2 − Y4)− ξ2(Y1 − Y4) + ξ4(Y1 − Y2)

]
/∆

N4 = −
[
ξ1(Y2 − Y3)− ξ2(Y1 − Y3) + ξ3(Y1 − Y2)

]
/∆ (3.96)

O1 = −
[
ξ2(Y3Z4 − Y4Z3)− ξ3(Y2Z4 − Y4Z2) + ξ4(Y2Z3 − Y3Z2)

]
/∆

O2 =
[
ξ1(Y3Z4 − Y4Z3)− ξ3(Y1Z4 − Y4Z1) + ξ4(Y1Z3 − Y3Z1)

]
/∆

O3 = −
[
ξ1(Y2Z4 − Y4Z2)− ξ2(Y1Z4 − Y4Z1) + ξ4(Y1Z2 − Y2Z1)

]
/∆

O4 =
[
ξ1(Y2Z3 − Y3Z2)− ξ2(Y1Z3 − Y3Z1) + ξ3(Y1Z2 − Y2Z1)

]
/∆ , (3.97)

with

∆ =(ξ1 − ξ2)(Y3Z4 − Y4Z3)− (ξ1 − ξ3)(Y2Z4 − Y4Z2) + (ξ1 − ξ4)(Y2Z3 − Y3Z2)

+(ξ2 − ξ3)(Y1Z4 − Y4Z1)− (ξ2 − ξ4)(Y1Z3 − Y3Z1) + (ξ3 − ξ4)(Y1Z2 − Y2Z1) . (3.98)
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The function ξ(X) has the same solution as in the triangular elements (Eq. 3.21 for exponential

and Eq. 3.24 for Power Law), with the minimum and maximum X now defined by

Xmin = min(Xn1 .Xn2 , Xn3 , Xn4) Xmax = max(Xn1 .Xn2 , Xn3 , Xn4) . (3.99)

The interpolation of φ is rewritten as

φ = [Liξ(X) +MiY +NiZ +Oi]φi , (3.100)

with derivatives

∂φ

∂X
=

[
ρUe
µ
ξ + 1

]
Liφi (3.101)

∂φ

∂Y
=Miφi (3.102)

∂φ

∂Z
=Niφi . (3.103)

The total momentum equation convective and diffusive flux is written as

Jφ−X = ρUφ− µe
∂φ

∂X
Jφ−Y = ρV φ− µe

∂φ

∂Y
Jφ−Z = ρWφ− µe

∂φ

∂Z
(3.104)

= Fiφi = Giφi = Hiφi , (3.105)

with

Fi = ρ [(U − Ue)Liξ(X) + U(MiY +NiZ +Oi)]− µLi (3.106)

Gi = ρV [Liξ(X) +MiY +NiZ +Oi]− µMi (3.107)

Hi = ρW [Liξ(X) +MiY +NiZ +Oi]− µNi . (3.108)

The integrated flux across the interior face is given by∫
CV f

~Jφ · d ~A =

∫
CV f

(Jφ−XdAX + Jφ−Y dAY + Jφ−ZdAZ) , (3.109)

where AX , AY , and AZ are the areas in the X, Y , and Z directions for the interior control volume

face CV f . Each triangular face is integrated using a quadratic quadrature based on equal weighting

of the three triangle edge midpoints. For an interior control volume face containing the tetrahedral
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face centroid f and the tetrahedral edge centroid e, the three midpoints used for integration are

between the face center and the edge center (e− f), between the edge center and the element

centroid (c− e), and between the face center and the element centroid (c− f). The flux at the

midpoints are found by using the X,Y, Z locations of the midpoints, which for X are

X(e− f) =
1

2

[
X(e) +X(f)

]
(3.110)

X(c− e) =
1

2

[
X(c) +X(e)

]
(3.111)

X(c− f) =
1

2

[
X(c) +X(f)

]
. (3.112)

The integration of flux for one triangular area of the control volume face CV f(e, fa) containing the

face fc and edge e is∫
CV f(e,fa)

~Jφ · d ~A =

∫
CV f(e,fa)

(Jφ−XdAX + Jφ−Y dAY + Jφ−ZdAZ)

=
([
Fi(c− e) + Fi(c− fa) + Fi(e− fa)

]∆AX
3

+
[
Gi(c− e) +Gi(c− fa) +Gi(e− fa)

]∆AY
3

+
[
Hi(c− e) +Hi(c− fa) +Hi(e− fa)

]∆AZ
3

)
φi , (3.113)

where ∆ ~A is the the area vector for only one of the triangular faces, but is equal to the other

triangle making up each interior face.

The integration of the flux across both triangles making up each control volume face is found by

adding the flux for first triangle face, CV f(e, fa), to the second triangle, CV f(e, fb), which gives

the total flux for the control volume face CV f .
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∫
CV f(e,fa)

~Jφ · d ~A+

∫
CV f(e,fb)

~Jφ · d ~A+ =
([
Fi(c− e) + Fi(c− fa) + Fi(e− fa)

]∆AX
3

+
[
Gi(c− e) +Gi(c− fa) +Gi(e− fa)

]∆AY
3

+
[
Hi(c− e) +Hi(c− fa) +Hi(e− fa)

]∆AZ
3

+
[
Fi(c− e) + Fi(c− fb) + Fi(e− fb)

]∆AX
3

+
[
Gi(c− e) +Gi(c− fb) +Gi(e− fb)

]∆AY
3

+
[
Hi(c− e) +Hi(c− fb) +Hi(e− fb)

]∆AZ
3

)
φi ,

(3.114)

or ∫
CV f

~Jφ · d ~A =
([

2Fi(c− e) + Fi(c− fa) + Fi(e− fa) + Fi(c− fb) + Fi(e− fb)
]∆AX

3

+
[
2Gi(c− e) +Gi(c− fa) +Gi(e− fa) +Gi(c− fb) +Gi(e− fb)

]∆AY
3

+
[
2Hi(c− e) +Hi(c− fa) +Hi(e− fa) +Hi(c− fb) +Hi(e− fb)

]∆AZ
3

)
φi

(3.115)

= ECFf,iφi . (3.116)

For the interior control volume face shown in Fig. 3.7, going from node 1 to 2, the edge center is

e = e1 and the two face centers are fa = f1 and fb = f2. Table 3.1 shows all six interior faces and

the edge and face centers that are used to compute the integrated flux.

Similar to the triangular grid, the fluxes for each interior face is calculated by looping through

all tetrahedral elements, finding the flux through all six interior faces, and either adding the flux

to the momentum coefficients if the area vector points out of the control volume or subtracting the

flux if the face area points into the control volume. Using the convention in Table 3.1 (with CFf

being the index in the first column), the procedure for adding fluxes to the momentum coefficients
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is as follows.

For n = 1, nele

(aP )1 = (aP )1 + E1,1 − E3,1 + E4,1

(anb−2)1 = (anb−2)1 − E1,2 + E3,2 − E4,2

(anb−3)1 = (anb−3)1 − E1,3 + E3,3 − E4,3

(anb−4)1 = (anb−4)1 − E1,4 + E3,4 − E4,4

(aP )2 = (aP )2 − E1,2 + E2,2 + E5,2

(anb−1)2 = (anb−1)2 + E1,1 − E2,1 − E5,1

(anb−3)2 = (anb−3)2 + E1,3 − E2,3 − E5,3

(anb−4)2 = (anb−4)2 + E1,4 − E2,4 − E5,4

(aP )3 = (aP )3 − E2,3 + E3,3 + E6,3

(anb−1)3 = (anb−1)3 + E2,1 − E3,1 − E6,1

(anb−2)3 = (anb−2)3 + E2,2 − E3,2 − E6,2

(anb−4)3 = (anb−4)3 + E2,4 − E3,4 − E6,4

(aP )4 = (aP )4 − E4,4 − E5,4 − E6,4

(anb−1)4 = (anb−1)4 + E4,1 + E5,1 + E6,1

(anb−2)4 = (anb−2)4 + E4,2 + E5,2 + E6,2

(anb−3)4 = (anb−3)4 + E4,3 + E5,3 + E6,3 ,

where (aP )i is the central coefficient for node i, and (anb−j)i is the neighbor coefficient for the node

i equation with the local node j as the neighbor node. The form of the momentum equations is as

follows.

(aP )iφi =

nnbi∑
j=1

(anb−j)iφnb−j + bi (3.117)

The procedure for finding fluxes follows the triangular procedure found in Sec. 3.1.2, and the

boundary conditions for momentum equations follows the triangular grid discussed in Sec. 3.1.2.1.
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3.2.3 Tetrahedral Element Shape Function for Pressure

The linear interpolation of pressure is accomplished with a shape function of the form

p(x, y, z) = Ax+By + Cz +D . (3.118)

The terms (A,B,C) are coefficients for each element given in summation notation for i = 1, 2, 3, 4

as

A = Lipi B = M ipi C = N ipi D = Oipi . (3.119)

The (L,M,N) coefficients are functions only of the element geometry and are as follows.

L1 =
[
Y2(Z3 − Z4)− Y3(Z2 − Z4) + Y4(Z2 − Z3)

]
/∆

L2 = −
[
Y1(Z3 − Z4)− Y3(Z1 − Z4) + Y4(Z1 − Z3)

]
/∆

L3 =
[
Y1(Z2 − Z4)− Y2(Z1 − Z4) + Y4(Z1 − Z2)

]
/∆

L4 = −
[
Y1(Z2 − Z3)− Y2(Z1 − Z3) + Y3(Z1 − Z2)

]
/∆ (3.120)

M1 = −
[
X2(Z3 − Z4)−X3(Z2 − Z4) +X4(Z2 − Z3)

]
/∆

M2 =
[
X1(Z3 − Z4)−X3(Z1 − Z4) +X4(Z1 − Z3)

]
/∆

M3 = −
[
X1(Z2 − Z4)−X2(Z1 − Z4) +X4(Z1 − Z2)

]
/∆

M4 =
[
X1(Z2 − Z3)−X2(Z1 − Z3) +X3(Z1 − Z2)

]
/∆ (3.121)

N1 =
[
X2(Y3 − Y4)−X3(Y2 − Y4) +X4(Y2 − Y3)

]
/∆

N2 = −
[
X1(Y3 − Y4)−X3(Y1 − Y4) +X4(Y1 − Y3)

]
/∆

N3 =
[
X1(Y2 − Y4)−X2(Y1 − Y4) +X4(Y1 − Y2)

]
/∆

N4 = −
[
X1(Y2 − Y3)−X2(Y1 − Y3) +X3(Y1 − Y2)

]
/∆ (3.122)

O1 = −
[
X2(Y3Z4 − Y4Z3)−X3(Y2Z4 − Y4Z2) +X4(Y2Z3 − Y3Z2)

]
/∆

O2 =
[
X1(Y3Z4 − Y4Z3)−X3(Y1Z4 − Y4Z1) +X4(Y1Z3 − Y3Z1)

]
/∆

O3 = −
[
X1(Y2Z4 − Y4Z2)−X2(Y1Z4 − Y4Z1) +X4(Y1Z2 − Y2Z1)

]
/∆

O4 =
[
X1(Y2Z3 − Y3Z2)−X2(Y1Z3 − Y3Z1) +X3(Y1Z2 − Y2Z1)

]
/∆ , (3.123)
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with

∆ =(X1 −X2)(Y3Z4 − Y4Z3)− (X1 −X3)(Y2Z4 − Y4Z2) + (X1 −X4)(Y2Z3 − Y3Z2)

+(X2 −X3)(Y1Z4 − Y4Z1)− (X2 −X4)(Y1Z3 − Y3Z1) + (X3 −X4)(Y1Z2 − Y2Z1) . (3.124)

The shape function coefficients for pressure have the same form as the momentum flux shape

function with ξ = x, Y = y, and Z = z. The momentum flux shape functions are dependent on the

local flow and need to be calculated each time the flow changes. The pressure shape functions are

only functions of the grid geometry and are calculated once, assuming the grid does not change.

The shape function for each element is rewritten as

p(x, y, z) =
(
Lix+M iy +N iz +Oi

)
pi . (3.125)

The pressure gradient components are given by

∂p

∂x
= Lipi

∂p

∂y
= M ipi

∂p

∂z
= N ipi . (3.126)

The above formulation gives the element pressure gradient. To find the pressure gradient at each

node, the pressure gradient is integrated over the node’s control volume, and then divided by the

control volume’s total volume. The integration used is as follows.∫
CV

∂p

∂x
d∀ =

nnb−ele∑
e=1

∆∀e
4

(
∂p

∂x

)
e

(3.127)

The pressure gradient component is computed from(
∂p

∂x

)
n

=
1

∆∀n

nnb−ele∑
e=1

∆∀e
4

(
∂p

∂x

)
e

(3.128)

=
1

∆∀n

nnb−ele∑
e=1

∆∀e
4

(
L1p1 + L2p2 + L3p3 + L4p4

)
e
, (3.129)

with

∆∀n =
nnb−ele∑
e=1

∆∀e
4

, (3.130)
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where nnb− ele is the number of neighbor elements that contain node n, or all the elements that

make up the control volume for node n. The gradient in the y and z directions follows similarly.(
∂p

∂y

)
n

=
1

∆∀n

nnb−ele∑
e=1

∆∀e
4

(
M1p1 +M2p2 +M3p3 +M4p4

)
e

(3.131)

(
∂p

∂z

)
n

=
1

∆∀n

nnb−ele∑
e=1

∆∀e
4

(
N1p1 +N2p2 +N3p3 +N4p4

)
e

(3.132)

3.2.4 Integration of Pressure and Other Source Terms

The pressure and source terms are constant over each triangular element, and for the x, y, and

z momentum equations are

−∂p
∂x

+ Su = −Lipi + (Su)e (3.133)

−∂p
∂y

+ Sv = −M ipi + (Sv)e (3.134)

−∂p
∂z

+ Sw = −N ipi + (Sw)e , (3.135)

where (Su)e, (Sv)e, and (Sw)e are the source terms evaluated for the triangular element e. The

integration of the source terms result in∫
e
(−∂p
∂x

+ Su)d∀ =
[
−Lipi + (Su)e

]
∆∀e (3.136)∫

e
(−∂p
∂y

+ Sv)d∀ =
[
−M ipi + (Sv)e

]
∆∀e (3.137)∫

e
(−∂p
∂z

+ Sw)d∀ =
[
−N ipi + (Sw)e

]
∆∀e . (3.138)

Each control volume is made up of one forth of neighboring element volumes. Therefore, each

control volume will have one forth of the element source term added.

(bu)1 = (bu)1 +
1

4

[
−Lipi + (Su)e

]
∆∀e

(bu)2 = (bu)2 +
1

4

[
−Lipi + (Su)e

]
∆∀e

(bu)3 = (bu)3 +
1

4

[
−Lipi + (Su)e

]
∆∀e

(bu)4 = (bu)4 +
1

4

[
−Lipi + (Su)e

]
∆∀e
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(bv)1 = (bv)1 +
1

4

[
−M ipi + (Sv)e

]
∆∀e

(bv)2 = (bv)2 +
1

4

[
−M ipi + (Sv)e

]
∆∀e

(bv)3 = (bv)3 +
1

4

[
−M ipi + (Sv)e

]
∆∀e

(bv)4 = (bv)4 +
1

4

[
−M ipi + (Sv)e

]
∆∀e

(bw)1 = (bw)1 +
1

4

[
−N ipi + (Sw)e

]
∆∀e

(bw)2 = (bw)2 +
1

4

[
−N ipi + (Sw)e

]
∆∀e

(bw)3 = (bw)3 +
1

4

[
−N ipi + (Sw)e

]
∆∀e

(bw)4 = (bw)4 +
1

4

[
−N ipi + (Sw)e

]
∆∀e

3.2.5 Generic Pressure Equation

The velocity interpolation discussed in Sec. 3.1.1 is used to avoid spurious pressure oscilla-

tions. The form of the momentum equations that are interpolated and substituted into the mass

conservation equations are

ũ = û− du
[
∂p

∂x

]
e

(3.139)

ṽ = v̂ − dv
[
∂p

∂y

]
e

(3.140)

w̃ = ŵ − dw
[
∂p

∂z

]
e

. (3.141)

The continuity equation is integrated over the control volume and has the form

nfaces∑
CV f=1

∫
CV f

ρ
[
ũdAx + ṽdAy + w̃dAz

]
= 0 , (3.142)

where CV f is the interior control volume face and nfaces are the total number of faces for each

control volume. The same quadratic quadrature is used to integrate the continuity equation (see
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Sec. 3.2.2 and integration in Eqs. 3.113-3.116). Integration of the continuity equation leads to∫
CV f

ρ
[
ũdAx + ṽdAy + w̃dAz

]
= ρ
([

2ũ(c− e) + ũ(c− fa) + ũ(e− fa) + ũ(c− fb) + ũ(e− fb)
]∆AX

3

+
[
2ṽ(c− e) + ṽ(c− fa) + ṽ(e− fa) + ṽ(c− fb) + ṽ(e− fb)

]∆AY
3

+
[
2w̃(c− e) + w̃(c− fa) + w̃(e− fa) + w̃(c− fb) + w̃(e− fb)

]∆AZ
3

)
= ρ
([

2û(c− e) + û(c− fa) + û(e− fa) + û(c− fb) + û(e− fb)
]∆AX

3

+
[
2v̂(c− e) + v̂(c− fa) + v̂(e− fa) + v̂(c− fb) + v̂(e− fb)

]∆AY
3

+
[
2ŵ(c− e) + ŵ(c− fa) + ŵ(e− fa) + ŵ(c− fb) + ŵ(e− fb)

]∆AZ
3

)
−ρ
([

2du(c− e) + du(c− fa) + du(e− fa) + du(c− fb) + du(e− fb)
]∆AX

3
Li

+
[
2dv(c− e) + dv(c− fa) + dv(e− fa) + dv(c− fb) + dv(e− fb)

]∆AY
3

M i

+
[
2dw(c− e) + dw(c− fa) + dw(e− fa) + dw(c− fb) + dw(e− fb)

]∆AZ
3

N i

)
pi (3.143)

=D̂CV f +DCV f,ipi . (3.144)

Using the convention in Table 3.1, the pressure coefficients and sources are computed by looping

through all elements as follows

For n = 1, nele

(ap−P )1 = (ap−P )1 +D1,1 −D3,1 +D4,1

(ap−nb−2)1 = (ap−nb−2)1 −D1,2 +D3,2 −D4,2

(ap−nb−3)1 = (ap−nb−3)1 −D1,3 +D3,3 −D4,3

(ap−nb−4)1 = (ap−nb−4)1 −D1,4 +D3,4 −D4,4

(bp−p)1 = (bp−p)1 − D̂1 + D̂3 − D̂4
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(ap−P )2 = (ap−P )2 −D1,2 +D2,2 +D5,2

(ap−nb−1)2 = (ap−nb−1)2 +D1,1 −D2,1 −D5,1

(ap−nb−3)2 = (ap−nb−3)2 +D1,3 −D2,3 −D5,3

(ap−nb−4)2 = (ap−nb−4)2 +D1,4 −D2,4 −D5,4

(bp−p)2 = (bp−p)2 + D̂1 − D̂2 − D̂5

(ap−P )3 = (ap−P )3 −D2,3 +D3,3 +D6,3

(ap−nb−1)3 = (ap−nb−1)3 +D2,1 −D3,1 −D6,1

(ap−nb−2)3 = (ap−nb−2)3 +D2,2 −D3,2 −D6,2

(ap−nb−4)3 = (ap−nb−4)3 +D2,4 −D3,4 −D6,4

(bp−p)3 = (bp−p)3 + D̂2 − D̂3 − D̂6

(ap−P )4 = (ap−P )4 −D4,4 −D5,4 −D6,4

(ap−nb−1)4 = (ap−nb−1)4 +D4,1 +D5,1 +D6,1

(ap−nb−2)4 = (ap−nb−2)4 +D4,2 +D5,2 +D6,2

(ap−nb−3)4 = (ap−nb−3)4 +D4,3 +D5,3 +D6,3

(bp−p)3 = (bp−p)3 + D̂4 + D̂5 + D̂6 ,

where the subscripts on pressure coefficients and source (ap and bp) are the local node number, the

subscripts for Df,i represent the local node i and the local face f , and the subscript on D̂ represents

the local face number.

The boundary condition for pressure is the same as for the triangular grid (see Sec. 3.1.6). With

the discretization, integration, and coefficients defined for the momentum and pressure equations,

the algorithms follow the same procedure as given in Sec. 2.3.
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3.3 Results

3.3.1 Lid-Driven Cavity

To validate the unstructured grid formulation, the driven cavity problem described in Sec. 2.4.1

is simulated at a Reynolds number of 100 on a triangulated uniform Cartesian grid. Two grids are

tested with 20 by 20 and 40 by 40 grid spacing. The steady results for the three algorithms tested (C-

N SIMPLER, RK-SIMPLER, and IRK-SIMPLER) all match, and are compared to Wirogo’s results

for the same case on a structured Cartesian grid that used the second order Flux Corrected Method

[29]. The results on both grids match the results from Wirogo well, verifying the unstructured grid

accurately simulates steady flow.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
u′

0.0
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Unstructured 20 x 20 Grid
Unstructured 40 x 40 Grid

Figure 3.9: Unstructured driven cavity centerline velocity (Re=100).
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3.3.2 Thin Flat Plate Normal to the Flow

The next test verifies unsteady flows are accurately simulated with the triangular grid and

compares the runtime of the algorithms. The test case is the unsteady flow over a thin, flat plate

described in Sec. 2.4.3.1. The flat plate surfaces are no-slip walls, the left boundary is uniform

inflow, the right boundary is a velocity outlet corrected for mass conservation, and the top and

bottom boundaries are set to free-stream conditions. The domain is rectangular with a spacing of

20L between the plate and the inlet, as well as the plate and the top and bottom boundaries, and a

spacing of 40L between the plate and the outlet. The grid on the plate surface has a spacing of L/75

along the top and bottom and L/60 on the left and right. The grid has 16,504 nodes and 32,702

elements, mostly clustered near the body and in the wake region. Simulations start impulsively and

are run until a non-dimensional time of t′ = t/(L/Ui) = 400. The traditional SIMPLER algorithm

with Crank-Nicolson time integration is the baseline case with the number of sub-iterations within

each time step fixed at 30.
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Figure 3.10: Flat plate coefficient of drag and lift.

The coefficient of drag (Cd) and lift (Cl) are plotted versus time in Fig. 3.10 for IRK-SIMPLER,

with ∆t′ = 2.0E−1. Table 3.2 shows the average coefficient of drag, Strouhal number, and runtime

for various time step sizes with Crank-Nicolson based SIMPLER (C-N), RK-SIMPLER (RK), and
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IRK-SIMPLER (IRK). All simulations use the same unstructured triangular grid. The runtime

(RTcvg) is the wall time it takes for the simulation to reach the unsteady converged region when

oscillations become uniform. C-N SIMPLER and IRK-SIMPLER converge for time steps up to

∆t′ = 2.0E − 1, while RK-SIMPLER only converges for time steps up to ∆t′ = 4.0E − 3.

Table 3.2: Flat plate simulation results at Re = 17, 800.

∆t′ Cd Sr RTcvg
2

IRK C-N RK IRK C-N RK IRK C-N RK

2.0E − 1 2.489 2.596 0.1184 0.1187 16.2 70.9

1.6E − 1 2.496 2.569 0.1185 0.1186 20.8 85.9

1.2E − 1 2.497 2.544 0.1186 0.1185 26.3 111

8.0E − 2 2.503 2.527 0.1187 0.1185 40.8 176

4.0E − 2 2.509 2.519 0.1187 0.1185 66.0 185

2.0E − 2 2.514 2.519 0.1187 0.1185 92.5 367

1.6E − 2 2.515 2.520 0.1187 0.1185 104 456

1.2E − 2 2.517 2.521 0.1187 0.1185 148 612

8.0E − 3 2.519 2.522 0.1186 0.1185 206 958

4.0E − 3 2.518 0.1184 43.1

2.0E − 3 2.521 0.1185 88.6

1.6E − 3 2.522 0.1185 104

1.2E − 3 2.523 0.1185 137

8.0E − 4 2.524 0.1185 207

4.0E − 4 2.527 0.1185 426

The average coefficient of drag and Strouhal number are plotted against time step size in Fig.

3.11. The average coefficient of drag and Strouhal numbers continue to change as the time step

size decreases and do not converge to one value. The reason for this is explained by looking at

the formulation used to derive the pressure equation. Multiple researchers have shown grids that

store pressure and velocity at the same location (often called collocated grids) can lead to spurious

pressure oscillations for small time step sizes and relaxation factors [60],[61],[62],[63]. This is likely

the reason why the coefficient of drag and Strouhal number do not converge as expected with

2RTcvg in minutes.
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Figure 3.11: Flat plate Strouhal number and coefficient of drag and lift.

decreasing time step size. Pressure contours in Figs. 3.12 and 3.13 show that for successively

smaller time step sizes, the pressure field goes from smooth to oscillatory (this is present in all

algorithms tested). Researchers present methods by which this effect is reduced or eliminated

[60],[61],[62],[63], but examining these different methods is not in the scope of present research.
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Figure 3.12: IRK-SIMPLER pressure contours for the flat plate (levels at ∆p/(0.5ρU2
i ) = 0.284).



www.manaraa.com

113

x/L

y/L

-4 -2 0 2 4 6 8-4

-2

0

2

4

∆t′ = 4E − 4

Figure 3.13: RK-SIMPLER pressure contours for the flat plate (levels at ∆p/(0.5ρU2
i ) = 0.284).

Figure 3.14 shows the runtime for the time steps tested. Figure 3.15 shows mass and momentum

residuals averaged for all time steps after unsteady convergence is met. The residuals show C-

N SIMPLER has lower mass residual than IRK-SIMPLER for the same time step size, but the

momentum residuals for C-N SIMPLER do not drop as rapidly with decreasing time step size as

IRK-SIMPLER. For time step sizes below about ∆t′ = 6E−2 IRK-SIMPLER has lower momentum

residual than C-N SIMPLER.
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Figure 3.14: Flat plate runtimea.

aSolid lines are total runtime, and dashed lines
are convergence runtime.
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Figure 3.15: Flat plate average residuala.
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are momentum residual.
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Despite issues with the spurious pressure fields, the IRK-SIMPLER algorithm results match

the C-N SIMPLER and RK-SIMPLER algorithms as well as previous simulation results [53],[54]

(which report a wide range of results for average coefficient of drag of 2.34-3.25 and Strouhal number

of 0.12-0.15). If it is assumed the spurious pressure field causes an increase in drag as the time

step size decreases, then Fig. 3.11 suggests IRK-SIMPLER results in more accurate coefficient of

drag than C-N SIMPLER for larger time steps. Certainly for the largest time step size allowed of

∆t′ = 2.0E − 1 IRK-SIMPLER’s result of 2.489 is more accurate than C-N SIMPLER’s result of

2.596 on this grid.

Table 3.3 shows the average runtime each algorithm requires to complete one time step. IRK-

SIMPLER is able to take the same time steps as C-N SIMPLER but only takes about 24% of the

time to complete each step. RK-SIMPLER only takes about 2.4% as much time as C-N SIMPLER

and about 10% as much time as IRK-SIMPLER, but RK-SIMPLER is required to take much

smaller time steps.

Table 3.3: Average runtime per time step for the flat plate.

Algorithm Seconds/Step

C-N SIMPLER 2.213

IRK-SIMPLER 0.534

RK-SIMPLER 0.054

3.3.3 Comparison of Structured and Unstructured Runtime

Both structured and unstructured grids are tested with C-N SIMPLER, RK-SIMPLER, and

IRK-SIMPLER. IRK-SIMPLER results in lower runtime, with greater speedup in the structured

grid. Table 3.4 shows the seconds per time step required on the flat plate case relative to C-N

SIMPLER for RK-SIMPLER and IRK-SIMPLER on both structured and unstructured grids. RK-

SIMPLER has a similar value for both structured and unstructured grids (around 2.5% of C-N

SIMPLER). IRK-SIMPLER has a value of about 9% for the structured grid, but that more than

doubles to 24% for the unstructured grid.
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Table 3.4: Normalized runtime for the flat plate case3.

Algorithm Normalized Runtime/Step

Structured Unstructured

Grid (0.476) Grid (2.213)

RK-SIMPLER 0.026 0.024

IRK-SIMPLER 0.092 0.241

Table 3.5 shows the percent of runtime each algorithm spends solving linear equations for the

flat plate problem. The percent of runtime for all algorithms on unstructured grids is much lower

than structured grids, by about half for C-N SIMPLER and IRK-SIMPLER and by almost a quarter

for RK-SIMPLER. This means relatively more time is spent calculating fluxes and coefficients for

the unstructured grid.

Table 3.5: Percent of runtime spent solving linear equations for the flat plate case.

Algorithm Percent Time in Linear Solvers

Structured Unstructured

Grid Grid

C-N SIMPLER 84.6% 41.8%

RK-SIMPLER 58.5% 15.1%

IRK-SIMPLER 68.7% 38.5%

The RK-SIMPLER algorithm only has one implicit equation (pressure equation) and also only

computes coefficients once per time step. IRK-SIMPLER has more implicit equations to solve,

and also recalculates the coefficients multiple times each time step. Because the calculation of the

coefficients requires much more effort for the unstructured grids, the IRK-SIMPLER algorithm

does not reduce the time compared to SIMPLER as much on the unstructured grid.

3.4 Conclusions

IRK-SIMPLER accurately and efficiently simulates flows on unstructured grids. For the flat

plate case, IRK-SIMPLER is four times faster than C-N SIMPLER each time step with similar

stability and more accurate solutions at higher time step sizes.

3C-N SIMPLER actual seconds/step given in parentheses.
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Compared to the structured simulations in Chapter 2, the reduction in runtime for IRK-

SIMPLER is not as much. Part of the reason for this is the increased time required for both

calculation of momentum coefficients (with a shape function calculated for each element every time

the coefficients are computed) as well as the linear solvers (Gauss-Seidel is primarily used and has

much slower convergence than the line-by-line TDMA method used for the structured simulations).

One future area to look for improvement in the IRK-SIMPLER algorithm is linear solvers with

faster convergence rates, such as BiCGSTAB or GMRES.

An issue with pressure oscillations was seen when small time steps and large grid cells are

used. The velocity interpolation method of Prakash [31] does not result in pressure oscillations for

steady problems and when large time steps are taken, but as the time step size decreases pressure

oscillations start to occur. Other researchers find similar problems for other incompressible methods

on collocated grids [61],[62],[63].
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CHAPTER 4. MOMENTUM FLUX INTERPOLATION

For traditional finite volume methods, values of two neighboring control volumes are used

to compute the flux at an interface. The central difference method, where values are linearly

interpolated from each grid point to the interface, is a commonly used discretization, however these

methods have stability issues for inviscid fluxes.

To avoid central difference stability issues, two common approaches are used. The first uses a

central difference scheme for the viscous fluxes, and a more stable scheme for the inviscid fluxes,

such as upwinding (ex. first order upwind, second order upwind (SOU) [25], quadratic upstream

interpolation for convective kinematics (QUICK) [26]), essentially non-oscillatory (ENO) [27], or

weighted ENO (WENO) [28] schemes. The second approach is to use a more stable physics-based

method to calculate the total viscous and inviscid fluxes with one scheme. The Exponential, Hybrid,

and Power Law schemes [5] do this by finding the local solution to the steady, one-dimensional

convection-diffusion equation. These schemes provide a stable way to calculate fluxes, but are

overly diffusive.

An improved physics-based scheme, called the flux correction method (FCM), is developed by

Wirogo [29] for structured grids. FCM uses the local solution to the convection-diffusion equa-

tion with sources (including unsteady, pressure, non-directional flux, and external sources) to find

the flux at an interface. The FCM scheme improves accuracy over the Power Law scheme while

maintaining good stability [29].

On structured grids, methods like SOU, QUICK, and higher order WENO schemes improve the

accuracy of the flux computation using a larger stencil along the grid lines and including more than

two neighboring nodes. For unstructured grids, increasing the stencil does not follow as naturally,

and improving the accuracy of flux computation becomes complex.
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Advances in finite element methods show the ability to achieve a high order of accuracy by

increasing the polynomial order and number of nodes used in the shape function within each cell

[64],[65]. Using a vertex-centered unstructured grid instead of cell-centered, the idea of fitting a

polynomial over each cell is used. When using this vertex-centered method (Fig. 3.1) the control

volume faces are in the middle of the cells, and the flow variables are known along these faces by

fitting a shape function through the cell vertices.

A Power Law scheme was developed for triangular grids, similar to the structured Power Law

scheme [30]. Like the structured Power Law scheme, the unstructured vertex-centered Power Law

scheme has better stability than the linear shape function, but it also is too diffusive. The present

research develops a flux correction method (FCM) for unstructured grids to improve the accuracy

of the Power Law scheme, without significantly increasing the computational effort required.

Methods for both structured and unstructured grids are investigated in this Chapter.

4.1 Methods for Structured Grids

4.1.1 Methods of Interest

Five methods for structured grids are examined, starting with the central difference method,

two upwind methods (first order and QUICK), and lastly two physics based methods (Power Law

and the Flux Corrected Method). Figure 4.1 shows the nomenclature used for the structured grid

when finding the flux on face e between grid points P and E, assuming a Cartesian grid (although

non-Cartesian structured grids follow similarly). The following definitions are used in the different

schemes

(δx)w = xP − xW (δx)e = xE − xP (δx)ee = xEE − xE (4.1)

(f+)e =
xE − xe
xE − xP

(f−)e =
xe − xP
xE − xP

(4.2)

Fe = (ρu)e De =
µe

(δx)e
. (4.3)

For uniformly spaced grids (f−)e = (f+)e = 0.5.
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e EPW EE

Figure 4.1: Grid nomenclature for structured schemes when finding flux at interface e.

The x direction momentum flux being interpolated has the form

J = ρuφ− µdφ
dx

, (4.4)

where J is the momentum flux (inviscid and viscous).

4.1.1.1 Central Difference

The central difference method is a common and simple method based on linear interpolation

between two points. Using the central difference to interpolate the total flux J results in

Je = (ρu)eφe − µe
(
dφ

dx

)
e

(4.5)

= Fe

[
(f−)eφE + (f+)eφP

]
−De(φE − φP ) . (4.6)

4.1.1.2 Upwind

To avoid instability in inviscid flux interpolation, upwinding schemes are used for the inviscid

fluxes, while the viscous fluxes are computed with the central difference scheme. The first order

upwind scheme (or simply upwind scheme) takes the local flow direction into account, to decide

whether to use the left or right point to determine the inviscid flux.

Je = Feφe −De(φE − φP ) , (4.7)

with

φe =


φP , if ue > 0

φE , if ue < 0 .

(4.8)
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This equation takes the nearest upwind grid point value of φ to calculate the interface flux.

The upwind scheme is only first order accurate but is a more stable scheme, especially for high

Reynolds number flows. Another scheme not discussed here is a second order upwinding (SOU)

scheme, that uses a linear extrapolation with two grid points upwind of the interface. The SOU

scheme improves the accuracy to second order [66].

4.1.1.3 QUICK

Another upwinding scheme is the QUICK (Quadratic Upstream Interpolation for Convective

Kinematics) scheme from Leonard [26]. The QUICK scheme uses three points to interpolate the

inviscid flux, two grid points upwind and one grid point downwind. The implementation of the

QUICK scheme (as well as SOU) using Lagrange interpolation is discussed in Rajagopalan and Yu

[66], and is used in current testing. The QUICK scheme inviscid flux is calculated as

φe =


φP +

[
γ1e(φW − φP ) + γ2e(φE − φP )

]
, if ue > 0

φE +
[
δ1e(φP − φE) + δ2e(φEE − φE)

]
, if ue < 0 ,

(4.9)

with

γ1e =

[
xe − xE
xW − xE

] [
xe − xP
xW − xP

]
γ2e =

[
xe − xP
xE − xP

] [
xe − xW
xE − xW

]
(4.10)

δ1e =

[
xe − xE
xP − xE

] [
xe − xEE
xP − xEE

]
δ2e =

[
xe − xP
xEE − xP

] [
xe − xE
xEE − xE

]
. (4.11)

In this form the QUICK scheme can be thought of as the first order upwind scheme with correction

terms to improve accuracy (terms in [ ] in Eq. 4.9). The number of grid points used in the

interpolation can continue to be increased (at least until a boundary is met); however, the more

points included, the more computations are required. Although the QUICK scheme uses a third

order interpolation, for the finite volume formulation, only second order accuracy is found in the

accuracy analysis.
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4.1.1.4 Power Law

Already discussed in Sec. 2 is the Power Law scheme of Patankar [5]. Unlike the upwinding

schemes discussed, the Power Law scheme is a method to interpolate the total momentum flux,

including both inviscid and viscous fluxes. The Power Law scheme is derived by solving the steady

one-dimension convection-diffusion equation without any sources.

∂ρueφ

∂x
− ∂

∂x

[
Γ
∂φ

∂x

]
= 0 (4.12)

The exact solution to this equation is an exponential function, which is expensive to compute. The

Hybrid and Power Law schemes are two different curve fits to the exponential function commonly

used. All three of these schemes result in a flux of the form

Je =
[
DeA(|Pe|) + J−Fe, 0K

]
(φP − φE) + FeφP , (4.13)

where Pe = Fe/De is the grid Peclet number. The function A(|Pe|) is defined for the Exponential,

Hybrid, and Power Law schemes, as well as the upwind and central difference schemes in the

following relationships.

A(|Pe|) =
|Pe|

[exp(|Pe|)− 1]
Exponential Scheme (4.14)

A(|Pe|) = J0, 1− 0.5|P |K Hybrid Scheme (4.15)

A(|Pe|) = J0, (1− 0.1|P |)5K Power Law Scheme (4.16)

A(|Pe|) = 1 Upwind Scheme (4.17)

A(|Pe|) = 1− 0.5|Pe| Central Difference Scheme (4.18)

This form of the central difference scheme is for the interface e located midway between E and

P , or (f−)e = (f+)e = 0.5. If this is not the case, the function for central difference becomes

A(|Pe|) = 1− (f−)ePe− J−Pe, 0K. The QUICK scheme is equivalent to the upwind scheme with an

additional term required for the correction terms (terms in [ ] in Eq. 4.9).
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4.1.1.5 Flux Corrected Method

Wirogo [29] developed a scheme correcting the Power Law scheme by including unsteady, pres-

sure gradient, and two-dimensional flow terms into the physics based interpolation. The starting

point for the Flux Corrected Method (FCM) is the steady one-dimension convection-diffusion equa-

tion with a source.

∂ρueφ

∂x
− ∂

∂x

[
Γ
∂φ

∂x

]
= Sφ−x , (4.19)

where the source term (Sφ−x) includes any additional terms in the momentum equations (namely

unsteady, pressure gradient, two- or three-dimensional, and other external source terms).

The flux using the FCM term is defined by

Je =
[
DeA(|Pe|) + J−Fe, 0K

]
(φP − φE) + FeφP + (Je)S , (4.20)

where the first part of the flux is equal to the Power Law scheme (or other schemes depending on

the choice of A(Pe)), and the last term (Je)S is the flux coming from the FCM source term. The

additional flux term is defined by

(J)S =
[
(δx)eQ(Pe) + (x− xP )

]
Sφ−x . (4.21)

This additional flux is dependent on the location of interest, and for the interface e the value of

x = xe leads to

(Je)S = (δx)e

[
Q(Pe) + (f−)e

]
Sφ−x . (4.22)

The function Q(Pe) is defined by

Q(Pe) =
Pe − exp(Pe) + 1

Pe exp(Pe)− Pe
=

1

exp(Pe)− 1
− 1

Pe
, (4.23)

with the limit Q(0) = −0.5. This function can be recast in the form

Q(Pe) =
A(|Pe|)− 1

Pe
+

J−Fe, 0K
Fe

. (4.24)

Matching 4.23 to 4.24 requires the exponential form of A(|Pe|) in Eq. 4.14, but the power law fit

in Eq. 4.16 also reduces the computational cost. Figure 4.2 shows the value of Q(Pe) over a range
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of Pe, using both the exponential and power law forms. The Q function has a minimum of −1.0,

as Pe → −∞, and a maximum of 0.0, as Pe → ∞. Using the power law fit shows no difference in

Fig. 4.2, and upon closer examination small differences appear in the range −4 < Pe < 4, with a

maximum difference of approximately 0.009 around Pe = ±1.0.

-100 -50 0 50 100

Pe

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Q(Pe)

Exact Exponential
Power Law Fit

-4 -2 0 2 4

Pe

-0.8

-0.6

-0.4

-0.2

Q(Pe)

Exact Exponential
Power Law Fit

Figure 4.2: Q(Pe) versus Pe with the exact exponential and the power law fit.
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For the two-dimensional momentum equations, the FCM source term are

Su−x =
[
− ∂ρu

∂t

]
+
[
− ∂ρveu

∂y
+

∂

∂y

(
µ
∂u

∂y

)]
+
[
− ∂p

∂x

]
+
[
Su

]
(4.25)

Su−y =
[
− ∂ρu

∂t

]
+
[
− ∂ρueu

∂x
+

∂

∂x

(
µ
∂u

∂x

)]
+
[
− ∂p

∂x

]
+
[
Su

]
(4.26)

Sv−x =
[
− ∂ρv

∂t

]
+
[
− ∂ρvev

∂y
+

∂

∂y

(
µ
∂v

∂y

)]
+
[
− ∂p

∂y

]
+
[
Sv

]
(4.27)

Sv−y =
[
− ∂ρv

∂t

]
+
[
− ∂ρuev

∂x
+

∂

∂x

(
µ
∂v

∂x

)]
+
[
− ∂p

∂y

]
+
[
Sv

]
. (4.28)

The first term in Eqs. 4.25-4.28 is the unsteady term. The second term in Eqs. 4.25 and 4.28 is

the directional flux term, and the second term in Eqs. 4.26 and 4.27 is the non-directional flux

term (named for whether the flux direction matches the velocity direction). The third and fourth

terms are pressure gradient and external source terms. Wirogo finds including all terms except the

directional flux terms results in the most accurate scheme and is used for present research. The

final source terms used are

Su−x =
[
− ∂ρu

∂t

]
+
[
− ∂p

∂x

]
+
[
Su

]
(4.29)

Su−y =
[
− ∂ρu

∂t

]
+
[
− ∂ρueu

∂x
+

∂

∂x

(
µ
∂u

∂x

)]
+
[
− ∂p

∂x

]
+
[
Su

]
(4.30)

Sv−x =
[
− ∂ρv

∂t

]
+
[
− ∂ρvev

∂y
+

∂

∂y

(
µ
∂v

∂y

)]
+
[
− ∂p

∂y

]
+
[
Sv

]
(4.31)

Sv−y =
[
− ∂ρv

∂t

]
+
[
− ∂p

∂y

]
+
[
Sv

]
. (4.32)

4.1.2 Results

4.1.2.1 Lid-Driven Cavity

The lid-driven cavity case (2.4.1) is used to compare the five different schemes discussed. A

Reynolds number of 1,000 is used and the grid spacing of the uniform Cartesian structured grid is

varied from 16 by 16 to 48 by 48. The u′ = u/Ulid error along the centerline x′ = x/L = 0.5 is

computed by comparing the current results to the results found on a highly refined grid of 1024 by

1024 using the central difference scheme. Figure 4.3 shows the error for the different schemes on
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the four grids tested. The slope of these lines show the spatial order of accuracy (dashed lines for

reference slopes of first and second order are also shown).

∆x′

0.001

0.01

0.1

Error

Central Difference
Power Law
Upwind
QUICK
FCM

0.020.040.06

O(∆t)

O(∆t2)

Figure 4.3: Spatial order of accuracy for the structured grid schemes.

The highest error is found in the upwind scheme which is first order accurate. The next highest

error comes from the Power Law scheme, which is better than first order but not second order

accurate. The central difference and QUICK schemes fall close to each other with second order

accuracy. The lowest error comes from the FCM scheme, which is also second order accurate.

4.1.2.2 Three-Dimensional Square Cylinder

The next case is the flow over a square cylinder of infinite length. The three-dimensional square

cylinder is shown in Fig. 4.4, with a cross-section that is L by L. The domain is 6L in the spanwise

direction (z), with symmetric boundary conditions to represent an infinite square cylinder with a
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uniform inflow. Up to a Reynolds number of 150, the square cylinder sheds vortices with only-two

dimensional flow and no variation in the z direction (w = 0 and ∂u,v,p
∂z = 0), but above a Reynolds

number of 150, secondary vortices form along the length of the cylinder with y vorticity [67]. For the

present test case, a Reynolds number of 175 is used. The grid is 162 by 82 by 26, with 16 grid cells

along the cylinder in the x and y directions and 24 grid cells along the cylinder in the z direction,

and gives results that agree with previous simulation results by Saha [67]. The body surfaces are no-

slip walls, the left boundary is uniform inflow, the right boundary is a velocity outflow corrected for

mass conservation, and all other boundaries are inviscid walls. Simulations are started impulsively,

with uniform freestream velocity and pressure, and are run until t′ = t/(L/Ui) = 400.

L

L
6L

Ui

Re =
ρUiL

µ

x

y
z

Figure 4.4: Schematic of the three-dimensional square cylinder problem.

The formulation for three-dimensional flow in Cartesian structured grids follows closely to the

two-dimensional formulation found in Sec. 2.3. The C-N SIMPLER algorithm is the baseline,

with the number of sub-iterations within each time step fixed at 20. Figure 4.5 shows the drag

and lift coefficient on the square cylinder for the three algorithms tested using both the Power

Law and QUICK schemes. The Power Law scheme does not show secondary vortices on this grid.

The QUICK scheme results show the regular oscillations of lift and drag coefficient as seen in the

Power Law scheme, but also non-regular oscillations that occur with lower frequency. These lower

frequency oscillations are a result of secondary vortices (with y vorticity), as observed by Saha [67].
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Figure 4.5: Drag and lift coefficient for the three-dimensional square cylinder with the Power Law
(top) and QUICK (bottom) schemes.
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Figure 4.6 shows the z-vorticity for both the Power Law and QUICK schemes at the midplane

z = 3L. Near the body, where the grid is more refined, results are similar; but as the vortices are

convected downstream, the Power Law scheme results in vortices that dissipate, while the QUICK

scheme results in vortices that travel downstream and slowly dissipate.

Figure 4.6: Three-dimensional square cylinder z-vorticity contours at the z midplane with the
Power Law (top) and QUICK (bottom) schemes.

Figure 4.7 shows the y-vorticity for both the Power Law and QUICK schemes at the midplane

through the center of the cylinder, y = 0. The Power Law results show no y-vorticity being

produced, while QUICK results in a pattern of y-vorticity that closely matches the results obtained
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by Saha [67]. This shedding of y-vorticity causes lower frequency variation in the lift and drag

coefficients.

Figure 4.7: Three-dimensional square cylinder y-vorticity contours at the y midplane with the
Power Law (top) and QUICK (bottom) schemes.

Table 4.1 shows time step restriction, runtime, average drag coefficients, and Strouhal num-

ber results for both the Power Law and QUICK schemes. The average coefficient of drag and

Strouhal number approach 1.660 and 0.14, respectively, as time step size decreases for the Power

Law simulations. For temporal accuracy of the Power Law simulations, an average drag coefficient

of 1.660±0.002 is an acceptable range. The QUICK simulations result in an average drag coeffi-
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cient and Strouhal number of 1.666 and 0.15, respectively, as time step size decreases. For temporal

accuracy of QUICK simulations, an average coefficient of drag of 1.666±0.002 is used.

Table 4.1: Three-dimensional square cylinder results.

∆tmax
L/Ui

CD at Sr at ∆tAcc
L/Ui

CPU Time at Speedup1 Flux

∆tmax ∆tmax ∆tAcc (min.) at ∆tAcc Scheme

C-N 1.000 1.796 0.112 0.100 1304.75 1.0
Power

RK 0.060 1.674 0.144 0.002 1181.05 1.1
Law

IRK 0.700 1.660 0.143 0.700 21.11 61.8

C-N 0.300 1.670 0.126 0.100 1277.44 1.0

QUICKRK 0.040 1.662 0.144 0.002 1187.55 1.1

IRK 0.600 1.666 0.148 0.600 28.69 44.5

The IRK-SIMPLER algorithm is able to take the largest time step size and give accurate results.

IRK-SIMPLER also has the lowest runtime, with a speedup of 61.9 for the Power Law simulations

and 44.5 for the QUICK simulations. For this case, RK-SIMPLER has about the same runtime as

SIMPLER and results in little speedup (1.1 times).

4.1.3 Conclusions

Five different flux interpolation schemes are tested for the structured Cartesian grid. The FCM

scheme has the lowest error for the lid-driven cavity case, and is second order accurate in space.

The central difference and QUICK schemes are also second order accurate but with a larger error

magnitude. The Power Law scheme is better than first order but did not result in second order

accuracy. The upwind scheme is only first order accurate.

The Power Law and QUICK schemes are tested on the three-dimensional square cylinder case.

On the same grid, Power Law is not able to capture the three-dimensional vortices found by other

researchers, while the QUICK scheme accurately captures the full three-dimensionality of the flow.

1Speedup is relative to C-N SIMPLER.
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4.2 Methods for Vertex-Centered Unstructured Grids

4.2.1 Methods of Interest

For both two- and three-dimensions, three methods are discussed: the Power Law scheme for

unstructured vertex-centered grids, the central difference or linear element scheme, and a new FCM

developed for unstructured grids.

4.2.1.1 Unstructured Power Law Scheme

Baliga [30] developed a scheme using the steady, two-dimensional convection-diffusion equation

without any sources as a basis for a modified linear triangular element shape function. This scheme

is similar to Patankar’s Power Law scheme, and is called the unstructured Power Law scheme

(or simply Power Law). This scheme is developed in Sec. 3.1.2, which should be referred to for

details omitted in this section. The Power Law scheme is derived by starting with the steady,

two-dimensional convection-diffusion equation with no sources

∂ρueφ

∂x
+
∂ρveφ

∂y
− ∂

∂x

[
µ
∂φ

∂x

]
− ∂

∂y

[
µ
∂φ

∂y

]
= 0 . (4.33)

After transforming to a coordinate system based on the element velocity direction, the form of

the shape function is

φ = Aξ(X) +BY + C (4.34)

with coefficients A, B, and C defined in Eq. 3.18. The exact solution for ξ(X) is an exponential

function, and a Power Law fit found by Baliga is

ξ(X) =
X −Xmax

Pe + J0, (1− 0.1|Pe|)5K
. (4.35)

The total momentum equation convective and diffusive flux is written in summation notation

as

Jφ−X = fiφi Jφ−Y = giφi , (4.36)

with functions fi and gi defined in Eqs. 3.106 and 3.107.
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4.2.1.2 Unstructured Central Difference Scheme - Linear Element

The shape function for the central difference scheme is represented in the same form as the Power

Law scheme, with the simple modification of setting ξ(X) = X. This can also be accomplished

without the coordinate transformation by using the linear interpolation in the form of Eq. 3.42

and the coefficients defined in 3.43 (the central difference scheme only depends on geometry).

For the present research, setting ξ(X) = X is used, as it is an easy modification to the existing

Power Law based code. If the second method of not translating the coordinate system is used

instead, significant modification of the code is required. If these modifications are made, the

simulations would likely be more efficient.

4.2.1.3 Unstructured Flux Corrected Method

The Power Law scheme yields good results; however, just as the structured Power Law scheme is

improved by including more terms into the interpolation, the unstructured scheme can be improved

as well. A new unstructured scheme based on the unsteady, two-dimensional convection-diffusion

equation with sources is developed following the concepts originally developed by Wirogo [29].

This new scheme is called the unstructured Flux Corrected Method (FCM). Starting with the two-

dimensional steady convection-diffusion equation with a transformed coordinate system aligned to

X, a source term is added to the right hand side of the equation (this source contains unsteady,

pressure, and other source terms).

∂ρUφ

∂X
− ∂

∂X

[
µ
∂φ

∂X

]
− ∂

∂Y

[
µ
∂φ

∂Y

]
= Sφ (4.37)

The shape function is then assumed to have a homogeneous part (φh) and a particular part

(φp).

φh = A′ξ(X) +B′Y + C ′

φp =
SφX

ρUe
, (4.38)
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with a total solution of

φ = A′ξ(X) +B′Y + C ′ +
SφX

ρUe
. (4.39)

Substituting this shape function into the differential equation yields the modified coefficients

A′ = Liφi − (LiXi)
Sφ
ρUe

(4.40)

B′ = Miφi − (MiXi)
Sφ
ρUe

(4.41)

C ′ = Niφi − (NiXi)
Sφ
ρUe

, (4.42)

again using summation notation with i = 1, 2, 3 for the three nodes in each triangular element. The

coefficients L, M , and N follow the same equations as the Power Law scheme. The shape function

then becomes only a function of the nodal values and the additional FCM source term.

φ = [Liξ(X) +MiY +Ni]φi + [X − (Liξ(X) +MiY +Ni)Xi]
Sφ
ρUe

(4.43)

The flux in the X and Y directions are found by

JX = fiφi + JX−S (4.44)

JY = giφi + JY−S , (4.45)

with the same functions for fi and gi as Power Law (Eqs. 3.106 and 3.107).

The flux that comes from the FCM source term is defined by

JX−S = [ρUX − fiXi − µ]
Sφ
ρUe

(4.46)

JY−S = [ρV X − giXi]
Sφ
ρUe

. (4.47)

Setting the source term to zero recovers the original Power Law scheme. For the x and y

momentum equations, the FCM source terms are

Su = −ρ∂ue
∂t
−
(
∂p

∂x

)
e

+ (Su−mom)e (4.48)

Sv = −ρ∂ve
∂t
−
(
∂p

∂y

)
e

+ (Sv−mom)e , (4.49)
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where the subscript e represents terms for a given element and Su−mom and Sv−mom are the sources

directly from the momentum equations. It is assumed that the FCM source terms are constant

over each element.

Unlike the structured FCM scheme, there are no directional or non-directional fluxes in the

FCM source because the unstructured FCM scheme is a shape function to interpolate flux over

both the x and y directions.

4.2.2 Results

4.2.2.1 Order of Accuracy

The lid-driven cavity case (Section 2.4.1) is used again to test the spatial order of accuracy

for the three unstructured schemes. The grids used are triangulated from uniform Cartesian grids

with equal grid spacing in x and y of ∆x′ = ∆x/L = ∆y/L. The grid spacing is varied, and

the error is computed by comparing the velocity profile at the vertical centerline (x/L = 0.5) to a

solution obtained by a structured solver with a central difference scheme on a 1024 by 1024 uniform

Cartesian grid. The Power Law and FCM schemes are tested, as well as the central difference (CD)

scheme. The results for a Reynolds number of 100 are presented in Fig. 4.8, with all three schemes

resulting in second order accuracy. The central difference and FCM schemes have almost identical

errors and Power Law has the largest error.

Figure 4.8 also shows the results for a Reynolds number of 400. Again, all schemes are second

order accurate, although Power Law does not asymptote to second order until a grid spacing of

about ∆x′ = 1E − 2. Central difference has the lowest error, however it does not converge for

grid spacing larger than ∆x′ = 6E − 2. FCM on the other hand, converges for grid spacing up to

∆x′ = 2.5E − 1.

The FCM error is about three times less than the Power Law error for Reynolds number of 100

at the smallest grid spacing, while at a Reynolds number of 400, the FCM error is about ten times

less than Power Law.
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Figure 4.8: Spatial order of accuracy for the unstructured grid schemes (top: Re = 100, bottom:
Re = 400).
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4.2.2.2 Flow over a circular cylinder

To test FCM on a more complex case, the flow over a circular cylinder is considered. A schematic

of the case is shown in Fig. 4.9. Like the flat plate, at certain Reynolds numbers (approximately

above Re = 49 [68]) the flow becomes unsteady, with laminar vortices shed from the cylinder.

A Reynolds number of 300 is used to simulate the vortex shedding in this region, although it

should be noted that researchers have found the flow to be three-dimensional at Reynolds number

of 300 [69],[68]. A Reynolds number of 300 is still used as a test case because of the amount of

two-dimensional computational results available to compare.

Ui

L

Re =
ρUiL

µ

t′ =
t

L/Ui
x

y

Figure 4.9: Schematic of the flow over a circular cylinder problem.

Simulations are started impulsively and run until a non-dimensional time of t′ = t/(L/Ui) = 200.

The domain is rectangular with a distance of 20L between the cylinder and the inlet, top, and

bottom boundaries. The outlet is 50L away from the cylinder. The cylinder surface is represented

by a grid made up of straight lines with nodes spaced either a half or a quarter degree apart,

depending on the grid (see Table 4.4). The IRK-SIMPLER algorithm, as well as the C-N SIMPLER

and RK-SIMPLER algorithms, are tested using FCM and PL schemes on the coarsest grid (grid 1).

Table 4.2 shows the average coefficient of drag, Strouhal number, and converged runtime (RTcvg)

for PL and FCM.

Figure 4.10 shows the coefficient of lift and drag on the cylinder over time. After some time,

vortices shed from the cylinder and an unsteady convergence is eventually reached when the oscil-

lations become constant. The flat plate coefficient of drag varies by about 40% compared to Cd and
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the coefficient of lift oscillates approximately between ±0.2, while the circular cylinder coefficient

of drag varies by only about 8% compared to Cd and the coefficient of lift oscillates approximately

between ±0.7.

Table 4.2: Cylinder results on grid 1 at Re = 3002.

∆t′ Cd Sr RTcvg

IRK C-N RK IRK C-N RK IRK C-N RK

PL 1E − 2 1.278 1.275 0.1924 0.1921 98.2 327

8E − 3 1.278 1.276 0.1924 0.1921 127 423

6E − 3 1.278 1.276 0.1924 0.1921 158 525

8E − 5 1.277 0.1923 803

6E − 5 1.277 0.1923 1120

4E − 5 1.277 0.1923 1690

FCM 1E − 2 1.374 1.370 0.2062 0.2058 94.2 381

8E − 3 1.374 1.371 0.2061 0.2058 134 434

6E − 3 1.373 1.372 0.2061 0.2058 174 472

8E − 5 1.350 0.2006 875

6E − 5 1.350 0.2006 1170

4E − 5 1.350 0.2006 1750

IRK-SIMPLER and C-N SIMPLER converge for time step sizes up to ∆t′ = 1E − 2, while

RK-SIMPLER is limited to ∆t′ = 8E − 5. For PL, all results are similar, with Cd = 1.28 and

Sr = 0.192 for all algorithms and time steps tested. For FCM, the results for IRK-SIMPLER and

C-N SIMPLER, are similar with Cd = 1.37 and Sr = 0.206 for all time steps tested, but RK-

SIMPLER has slightly different values of Cd = 1.35 and Sr = 0.201 for all time steps tested. Table

4.3 compares simulation results from other researchers for the same problem (all with Re = 300),

as well as the most refined result for FCM (shown below). On grid 1, FCM results match quite

well, but PL results do not. For both PL and FCM, IRK-SIMPLER reaches an accurate, converged

solution faster than RK-SIMPLER or C-N SIMPLER with only 30% of the runtime per time step

compared to C-N SIMPLER (Table 4.5).
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Figure 4.10: Circular cylinder coefficient of drag and lift.

Table 4.3: Simulation results for
flow over a cylinder at Re=300.

Source Cd Sr

Present 1.39 0.212

Ref [70] 1.37 0.207

Ref [68] 1.37 0.215

Ref [69] 1.38 0.213

Table 4.4: Cylinder grids tested.

Grid # Nodes # Elements Body Node Spacing

1 76,497 150,137 1/2 Degree

2 106,738 210,447 1/4 Degree

3 164,336 325,639 1/4 Degree

To see how PL and FCM converge as the grid is refined, two more refined grids are tested

(see Table 4.4 for grid information). Given that IRK-SIMPLER is the most accurate and efficient

method, only it is tested on the refined grids. Table 4.6 shows the results for the three grids tested

for PL and FCM.

As the grid is refined, FCM converges to Cd = 1.39 and Sr = 0.212 with little difference between

grid 2 and grid 3. PL approaches a similar value but only reaches Cd = 1.37 and Sr = 0.208 for

grid 3, with a relatively large difference between grid 2 and grid 3. Table 4.7 shows a summary

of the IRK-SIMPLER results on the three grids, all using ∆t′ = 6E − 2. These results show

improved accuracy of FCM, with an additional cost per time step of less than 1% compared to PL.

The solution for FCM on the coarsest grid 1 yields similar results to PL on the finest grid 3, but

3RTstep is runtime per step in seconds.
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Table 4.5: Average runtime per time step on grid 13.

Algorithm RTstep
PL FCM

C-N SIMPLER 1.361 1.415

RK-SIMPLER 0.038 0.042

IRK-SIMPLER 0.409 0.411

FCM only takes 0.411 seconds each time step compared to PL at 1.030 seconds each time step.

Comparing these solutions at similar accuracy levels, FCM achieves the results about 2.5 times

faster per step.

Table 4.6: Cylinder results using IRK-SIMPLER at Re = 300.

Grid # ∆t′ Cd Sr RTcvg

PL FCM PL FCM PL FCM

1 1E − 2 1.278 1.374 0.1924 0.2062 98.2 94.2

8E − 3 1.278 1.374 0.1924 0.2061 127 134

6E − 3 1.278 1.373 0.1924 0.2061 158 174

2 1E − 2 1.348 1.392 0.2042 0.2111 79.7 88.2

8E − 3 1.348 1.392 0.2042 0.2111 99.4 144

6E − 3 1.348 1.392 0.2043 0.2111 133 145

3 1E − 2 1.369 1.395 0.2078 0.2120 137 135

8E − 3 1.369 1.395 0.2078 0.2120 171 157

6E − 3 1.369 1.394 0.2078 0.2120 231 223

Table 4.7: Summary of cylinder results on different grids for Re = 300.

Grid # Cd Sr RTstep Time Difference

PL FCM PL FCM PL FCM (FCM-PL)/PL

1 1.28 1.37 0.192 0.206 0.409 0.411 0.5%

2 1.35 1.39 0.204 0.211 0.652 0.678 0.4%

3 1.37 1.39 0.208 0.212 1.032 1.101 0.7%

Figures 4.11-4.16 show pressure contours for the cylinder using Power Law and FCM on all

three grids. The spurious pressure oscillations are present is all cases and is worse further away

3RTcvg in minutes.
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from the cylinder where the grid is coarser. The spurious behavior improves for refined grids (2 and

3), as well as improves for FCM compared to Power Law. Vortices are present further downstream

when using more refined grids and when using FCM compared to Power Law.
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Figure 4.11: Pressure contours for grid 1 using Power Law (levels at ∆p/(0.5ρU2
i ) = 0.25).
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Figure 4.12: Pressure contours for grid 1 using FCM (levels at ∆p/(0.5ρU2
i ) = 0.25).
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Figure 4.13: Pressure contours for grid 2 using Power Law (levels at ∆p/(0.5ρU2
i ) = 0.25).
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Figure 4.14: Pressure contours for grid 2 using FCM (levels at ∆p/(0.5ρU2
i ) = 0.25).
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Figure 4.15: Pressure contours for grid 3 using Power Law (levels at ∆p/(0.5ρU2
i ) = 0.25).
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Figure 4.16: Pressure contours for grid 3 using FCM (levels at ∆p/(0.5ρU2
i ) = 0.25).
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4.2.2.3 Flow over a sphere

The IRK-SIMPLER algorithm with the new unstructured FCM scheme is developed for three-

dimensions using vertex-centered tetrahedral grids. The formulation of the FCM source terms is

similar to the two-dimensional formulation. The laminar flow over a sphere at Reynolds numbers of

100 and 300 are simulated to compare the PL and FCM schemes. At Reynolds numbers below 200,

flow is steady and axisymmetric, while at Reynolds numbers above 280, the flow sheds unsteady

vortices [71]. Four grids are tested from coarse to fine, with the sphere surface grid created by

mapping a uniform Cartesian cube grid to a sphere centered at the origin [72].

xsphere = xcube

√
1−

y2
cube + z2

cube

2
+
y2
cubez

2
cube

3

ysphere = ycube

√
1−

x2
cube + z2

cube

2
+
x2
cubez

2
cube

3
(4.50)

zsphere = zcube

√
1−

x2
cube + y2

cube

2
+
x2
cubey

2
cube

3

This results in a surface grid on the sphere made up of planar triangles. The number of uniform

cube grid spacing varies from 50 to 150 depending on the grid (see Table 4.10), resulting in 15002

to 135002 nodes on the sphere surface. For the sphere, the characteristic length L is the sphere

diameter.

Table 4.8: Sphere results for Re = 1004.

Grid # CD RTcvg
PL FCM PL FCM

1 1.122 1.081 1.95 2.52

2 1.104 1.080 5.98 6.49

3 1.097 1.078 8.39 9.33

4 1.095 1.082 34.8 35.9

Table 4.8 shows the results for Re = 100 on the four grids tested, including coefficient of drag

and converged runtime (RTcvg, reached when the L2 norm of all residuals are less than 1E − 6).

Comparison to other results in Table 4.9 shows that FCM has good agreement with previous results,

4RTcvg in hours.
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even on the coarsest grid, while PL results in a higher coefficient of drag than expected on all grids

tested. The PL cases converge with less runtime on the same grid, but to achieve an accurate

solution, PL requires a more refined grid and longer runtime to converge.

Table 4.9: Sphere simulation results.

Re=100 Re=300

Source CD CD Sr

Present 1.082 0.654 0.132

Ref [71] 1.087 0.657 0.134

Ref [73] — 0.655 0.136

Ref [74] — 0.656 0.137

Ref [75] 1.085 — —

Table 4.10: Sphere grids.

Grid # # Nodes # Elements Body Grid

1 342,656 2,030,113 503

2 643,887 3,772,254 1003

3 821,229 4,881,586 1003

4 1,913,138 11,435,539 1503

Table 4.11: Sphere results for Re = 300.

Grid # ∆t′ CD Sr RTcvg

PL FCM PL FCM PL FCM

1 6E − 1 0.6946 0.6511 Steady 0.1195 0.850 0.772

4E − 1 0.6945 0.6508 Steady 0.1215 1.49 0.828

2E − 1 0.6941 0.6504 Steady 0.1229 2.59 1.69

1E − 1 0.6938 0.6500 Steady 0.1235 5.87 3.85

8E − 2 0.6937 0.6499 Steady 0.1236 6.28 4.76

2 4E − 1 0.6780 diverge Steady — 1.28 —

2E − 1 0.6779 0.6519 Steady 0.1289 3.13 5.12

1E − 1 0.6778 0.6520 Steady 0.1303 6.37 10.4

8E − 2 0.6778 0.6519 Steady 0.1305 7.95 12.9

3 2E − 1 0.6719 0.6504 0.1058 0.1308 16.0 8.72

1E − 1 0.6719 0.6504 0.1053 0.1316 31.1 18.1

8E − 2 0.6719 0.6504 0.1054 0.1317 39.5 22.0

4 1E − 1 0.6672 0.6536 0.1259 0.1323 70.6 51.6

8E − 2 0.6673 0.6536 0.1261 0.1324 88.6 65.2

Table 4.11 shows the results for Re = 300 on the four grids tested, including average coefficient

of drag, Strouhal number and converged runtime (RTcvg in hours). On grids 1 and 2, PL is unable

to capture the unsteady vortex shedding and results in a steady solution. For all grids, FCM
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captures the vortex shedding well and has good agreement with other results in Table 4.9. For the

finer grids, PL captures some of the unsteady vortex shedding, but both average drag coefficient

and Strouhal number differ significantly from results in Table 4.9.

Table 4.12 shows the results on all grids for the lowest time step size tested (∆t′ = 8E − 2)

along with average runtime per time step for each grid. For all four grids, the additional time

required each time step for FCM is less than 5%. This benefit, alongside the improved accuracy,

allows FCM to converge to accurate solutions much faster than PL. For the grids tested, PL has

yet to converge and requires further refinement and additional runtime to yield accurate results.

Table 4.12: Re = 300 Sphere results summary using ∆t′ = 8E − 25.

Grid # CD Sr RTstep Time Difference

PL FCM PL FCM PL FCM (FCM-PL)/PL

1 0.694 0.650 Steady 0.124 0.509 0.533 4.7%

2 0.678 0.652 Steady 0.131 0.762 0.783 2.8%

3 0.672 0.650 0.105 0.132 1.262 1.322 4.8%

4 0.667 0.654 0.126 0.132 3.099 3.120 3.4%

Figures 4.17 and 4.18 show the coefficient of drag versus time for the grids tested using Power

Law and FCM, respectively. Because the FCM lines are close together, a zoomed region is shown

in Fig. 4.19. The PL solution on grid 3, although resulting in a nonzero Strouhal number, has very

low magnitude oscillations that are not visible in Fig. 4.17. On grid 4, PL has more pronounced

oscillations, but not as large as FCM.

5RTstep in minutes.
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Figure 4.17: Sphere coefficient of drag using
Power Law at Re = 300.
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Figure 4.18: Sphere coefficient of drag using
FCM at Re = 300.
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Figure 4.19: Sphere coefficient of drag using FCM at Re = 300, zoomed in.
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4.2.3 Conclusions

The unstructured FCM scheme is developed and shown to be second order accurate with lower

error than the Power Law scheme. FCM also shows some improvement in reducing the pressure

oscillations seen in the unsteady cases. FCM requires less than 1% and 5% more runtime per

time step than Power Law for two- and three-dimensional cases respectively. With the improved

accuracy and modest increase in runtime over Power Law, FCM yields accurate results, with up to

19 times speedup over Power Law.
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CHAPTER 5. TURBULENCE MODELING

Turbulence is an important factor in wind turbine and wind farm performance. Although the

Navier-Stokes equations include all the physics that govern fluid flow, fully resolving the smallest

scales of turbulence in space and time requires very high resolution Direct Numerical Simulation

(DNS). To avoid fully resolving all the scales of turbulence, turbulence modeling is used.

For present research, RANS modeling is used to handle turbulence without increasing the

computational cost dramatically. The model chosen is the k− ε model with both the standard and

realizable versions.

5.1 Governing Equations

Index notation is commonly used for turbulence equations, and the following terms are defined.

u1 = u u2 = v u3 = w x1 = x x2 = y x3 = z (5.1)

When using index notation, a repeated index represents a summation. For example, the divergence

of a vector is represented as

∂uj
∂xj

=
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
. (5.2)

The Navier-Stokes equations written in index form are

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ bi (5.3)

∂uj
∂xj

= 0 , (5.4)

where bi is the momentum source.

The RANS equations are formed by assuming the flow has mean and turbulent fluctuating parts

ui = Ui + u′i p = P + p′ , (5.5)
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where the turbulent fluctuations have a zero mean, resulting in the following time averaged quan-

tities (where an upper bar represents time averaging).

Ui = Ui u′i = 0 ui = Ui (5.6)

P = P p′ = 0 p = P (5.7)

Substituting the terms in Eq. 5.5 into Eqs. 5.3 and 5.4

∂

∂t

[
ρ(Ui + u′i)

]
+

∂

∂xj

[
ρ(Uj + u′j)(Ui + u′i)

]
= − ∂

∂xi
(P + p′) +

∂

∂xj

[
µ
∂

∂xj
(Ui + u′i)

]
+ Si (5.8)

∂

∂xj
(Uj + u′j) = 0 . (5.9)

Averaging Eqs. 5.8 and 5.9 over time results in the RANS equations

∂

∂t
(ρUi) +

∂

∂xj
(ρUjUi) = − ∂P

∂xi
+

∂

∂xj

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+

∂

∂xj
(−ρu′ju′i) + bi (5.10)

∂Uj
∂xj

= 0 , (5.11)

where the only term that differs from Eqs. 5.3 and 5.4 is −ρu′ju′i, which is called the Reynolds stress.

The Reynolds stress is a tensor, and some RANS models, known as Reynolds Stress Transport

(RST) models, develop six equations to model each component of the symmetric Reynolds stress

tensor. The one- and two-equation models develop a scalar model that relates the Reynolds stress

to terms like mixing length, eddy viscosity, and turbulent kinetic energy.

The model investigated in the present research is the k − ε model, one of the most common

methods used for engineering applications. In future equations, the fluctuating terms are denoted

as u′i, but the mean terms are denoted ui.

5.1.1 k − ε Models

The k− ε models use a linear stress-strain relationship to find the Reynolds stress, and assume

equilibrium between Reynolds stress and the mean rate of strain.

−ρu′ju′i = 2µTSi,j −
2

3
ρkδi,j , (5.12)
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where µT is the turbulent eddy viscosity, Si,j is the rate of strain remote, k is the turbulence kinetic

energy, and δi,j is the Kronecker delta function.

µT = Cµρ
k2

ε
Si,j =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.13)

k =
1

2
u′iu
′
i δi,j =


1, if i = j

0, if i 6= j

(5.14)

where ε is the turbulent dissipation and Cµ is a model constant (or a known variable in some

models). At this point the RANS momentum equation is written with the new relationship for

Reynolds stress.

∂

∂t
(ρui) +

∂

∂xj
(ρujui) =− ∂p

∂xi
+

∂

∂xj

[
(µ+ µT )

(
∂ui
∂xj

+
∂uj
∂xi

)]
− 2

3

∂

∂xi
(ρk) + bi (5.15)

=− ∂p

∂xi
+

∂

∂xj

[
2(µ+ µT )Si,j

]
− 2

3

∂

∂xi
(ρk) + bi (5.16)

The k − ε model has two unknowns, k and ε, that must be solved with two equations (hence

it is called a two-equation model). The two equations are both transport equations with unsteady,

convection, diffusion, production, and dissipation terms.

5.1.1.1 Standard k − ε

The standard k−ε model was first developed by Jones and Launder [76] with empirical constants

given in Launder and Sharma [34]. The equations for k and ε are

∂

∂t
(ρk) +

∂

∂xj
(ρujk) =

∂

∂xj

[(
µ+

µT
σk

)
∂k

∂xj

]
+ Pk − ρε (5.17)

∂

∂t
(ρε) +

∂

∂xj
(ρujε) =

∂

∂xj

[(
µ+

µT
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
Pk − C2ερ

ε2

k
, (5.18)

where Pk is the production of turbulent kinetic energy and σk, σε, C1ε, and C2ε are empirical

constants set to match experimental data (values given in Table 5.1). The production term is

found by

Pk = µTS
2 , (5.19)
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where S is

S =

√
1

2
Si,jSi,j . (5.20)

This production term can be modified using the Kato-Launder modification [77], which can improve

the accuracy in flows with high acceleration regions. The Kato-Launder modified production term

is

Pk = µTSΩ , (5.21)

where Ω is

Ω =

√
1

2
Ωi,jΩi,j (5.22)

and Ωi,j is the rate of rotation

Ωi,j =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (5.23)

The standard production term (without the Kato-Launder modification) is used, unless otherwise

noted.

Table 5.1: Model constants used for standard k − ε.
Constant Value

σk 1.0

σε 1.3

C1ε 1.44

C2ε 1.92

Cµ 0.09

5.1.1.2 Realizable k − ε

The realizable k− ε model [78] was developed to improve upon the standard k− ε model. There

are two differences between the models. The realizable k − ε model treats Cµ as a variable and

uses different production and dissipation terms in the ε equation. The k equation is identical to

the standard model (Eq. 5.17), and the ε equation is

∂

∂t
(ρε) +

∂

∂xj
(ρujε) =

∂

∂xj

[(
µ+

µT
σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

µε
ρ

. (5.24)
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The following definitions are used in the realizable k − ε model

C1 = max

[
0.43,

η

η + 0.5

]
η = S

k

ε
(5.25)

Cµ =
1

Ao +As
ku∗

ε

u∗ =
√
Si,jSi,j + Ωi,jΩi,j (5.26)

As =
√

6 cosφ φ =
1

3
cos−1

[√
6W
]

(5.27)

W =
Si,jSj,kSk,i

S̃3
S̃ =

√
Si,jSi,j . (5.28)

The realizable k − ε model constants are given in Table 5.2.

Table 5.2: Model constants used for realizable k − ε.
Constant Value

σk 1.0

σε 1.2

Ao 4.04

C2 1.90

5.1.2 Boundary Conditions

At non-wall boundaries, boundary conditions are either given as known values of k and ε, or an

known turbulence intensity, I, and turbulence length scale, l. If I and l are known, k and ε are set

from

k =
3

2
(UiI)2 ε = Cµ

k3/2

l
, (5.29)

using Cµ = 0.09 and Ui is the free-stream mean velocity. These equations are also used to initialize

the domain when other values are not known.

On walls, k = 0 due to the no-slip condition, but a boundary condition on ε is not immediately

apparent. Instead of finding a boundary condition for ε and requiring several grid points near the

wall to capture the thin boundary layer, wall functions are used.

5.1.2.1 Wall Functions

For a fully developed turbulent boundary layer, three regions exist near the wall [36].
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• Law of the Wall (Viscous Sub-Layer): y+ < 5

In this region molecular viscous stress is dominant and turbulent stress is small.

u+ = y+ (5.30)

• Buffer Layer : 5 < y+ < 40

This layer is between the viscous and inertial sub-layers and blends the velocity profile between

the two.

• Log Layer (Inertial Sub-Layer): 40 < y+ < 200

u+ =
1

κ
ln(Ey+) (5.31)

Outside the log layer is the law of the wake region that is not universal and is problem dependent.

The non-dimensional terms are defined as

y+ =
ρu∗y

µ
u+ =

u

u∗
. (5.32)

The friction velocity, u∗, is defined by

u∗ =
√
τw/ρ , (5.33)

where τw is the shear stress due to skin friction at the wall. The constants for the wall layers are

κ = 0.42 E = 9.81 . (5.34)

Wall functions use the fact that for turbulent boundary layers, below about y+ = 200, the flow

is the same for all cases. Therefore, wall functions requires the first grid point to fall within the

inertial sub-layer, y+ ≤ 200, and also, the wall functions should have the first grid point above the

viscous sub-layer, y+ ≥ 40. Because this is not guaranteed at all points, the wall functions are used

outside of these bounds, but may not result in accurate solutions.

The wall stress is calculated by combining Eqs. 5.33, 5.31, and 5.32 into

τw = ρu2
∗ =

ρκupu∗
ln(Ey+)

, (5.35)
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where up is the velocity at the first grid point above the wall in the inertial sub-layer. In practice,

the wall stress is calculated using the above equation, and the effective viscosity next to the wall is

calculated from

µw = τw
yp
up

=
ρκypu∗
ln(Ey+)

. (5.36)

The equations for wall stress and effective wall viscosity are functions of u∗, which are not

known. Launder and Spalding [79] developed the standard wall function by setting

u∗ = C1/4
µ k1/2

p . (5.37)

The wall stress is calculated from the given flow variables at the point p above the wall.

τw =
ρκupC

1/4
µ k

1/2
p

ln
[
E(y+)p

] , (5.38)

where

(y+)p =
ρC

1/4
µ k

1/2
p yp

µ
, (5.39)

with µ being the fluid viscosity. If the point yp is lower than (y+)e = 11.225, the relationship for

the viscous sub-layer is used. This results in a wall stress of

τw = µ
up
yp

. (5.40)

Whether the point is in the viscous or inertial sub-layer, the effective viscosity is calculated

using

µw = τw
yp
up

. (5.41)

The production term, Pk and dissipation at the first point above the wall are set by assuming

local equilibrium [80].

Pk =
τ2
w

ρκypC
1/4
µ k

1/2
p

(5.42)

εp =
C

3/4
µ k3/2

κyp
(5.43)

For rough walls with roughness height Ks, the effective viscosity in the inertial region is

τw =
ρκupC

1/4
µ k

1/2
p

ln
[
E(y+)p

]
−∆B

(5.44)
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where

∆B = ln
[
1 + 0.3(Ks)+

]
(Ks)+ = Ks

ρu∗
µ

. (5.45)

5.1.3 Implementation Details for Unstructured Grids

The k− ε model has been implemented and tested on structured grids by Sayan [80] and Murali

[44]. The present research is interested in testing the k− ε model on the unstructured vertex-based

grids defined in Chapter 3. The k and ε terms are stored at the vertices of the elements, and the

turbulent viscosity, µT , is stored at the element center and is assumed constant over each element.

The convective and diffusive fluxes for k and ε equations are computed using the same Power Law

and FCM methods as discussed in Chapters 3 and 4.

When using the FCM scheme, the source term for the k equation is

Sk = −ρ∂ke
∂t

+ (Pk)e − ρεe , (5.46)

where ke and εe are quantities averaged to the element center, and (Pk)e is the production term

calculated at the element center. The FCM source terms for the ε equation are

Sstdε = −ρ∂εe
∂t

+ C1ε
εe
ke

(Pk)e − C2ερ
ε2e
ke

(5.47)

Srlzε = −ρ∂εe
∂t

+ ρC1Sεe − ρC2
ε2e

ke +
√

µeεe
ρ

, (5.48)

for standard and realizable k − ε models respectively, and again all terms are evaluated at the

element center.

Using the FCM scheme for the momentum equations involves additional source terms from the

turbulence terms

Su = −ρ∂ue
∂t
−
(
∂p

∂x

)
e

+ (Su−mom)e +
∂

∂x

[
(µ+ µT )

∂u

∂x
− 2

3
ρk − p

]
+

∂

∂y

[
(µ+ µT )

∂v

∂x

]
(5.49)

Sv = −ρ∂ve
∂t
−
(
∂p

∂y

)
e

+ (Sv−mom)e +
∂

∂x

[
(µ+ µT )

∂u

∂y

]
+

∂

∂y

[
(µ+ µT )

∂v

∂y
− 2

3
ρk − p

]
. (5.50)

Figure 5.1 shows the layout of an unstructured vertex-centered grid at a wall. For elements

with an edge on a wall, such as element e1, the wall stress, (τw)1, is calculated using (yp)1, (up)1
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(which is parallel to the boundary edge), and kp from node n1. These elements use the same values

to calculate effective viscosity, µeff = µ + µT . For elements that contain wall nodes but do not

have an edge on the wall, the effective viscosity is calculated by averaging the neighboring elements

with wall edges as

µeff =
1∑N

n=1
1

N(µeff )n

, (5.51)

where N is the total number of neighbor elements with wall edges. For element e3 in Fig. 5.1,

(µeff )3 =
1

1
2(µeff )1

+ 1
2(µeff )2

. (5.52)

n1
(up)1

(Pk)1 n2

(up)2

(Pk)2

(τw)1 (τw)2

e1

(µeff )1

e3

(µeff )3

e2

(µeff )2
(yp)2

(yp)1

Figure 5.1: Boundary conditions and wall functions for triangle elements.

For nodes adjacent to the wall, like n1 and n2 in Fig. 5.1, the k production term, Pk, is

computed using the wall stress at the nearest wall edge and the quantities at the node (including

yp to the nearest wall edge). The production term is integrated using the node control volume, not

the element volume. Also at these nodes, the value of ε is set by Eq. 5.43.

The realizable k − ε model is stable and converges for the cases tested, but the standard k − ε

model tends to diverge. To improve the stability, limits on the minimum and maximum of k, ε
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and µT are set, and allows the standard model to converge for more cases. A downside to this is

the limiting values are not known before starting the simulation. In practice, limits are found by

running the realizable model to find the maximum values in the converged solution and limits were

set slightly above the maximum values found. Minimum limits are set on a trial and error basis.

Another stability improvement is a variable Cµ formulation developed by Rodi [81] as

Cµ = min

[
0.09,

0.10738(0.64286 + 0.19607R)

[1 + 0.357(R− 1)]2

]
, (5.53)

where R is the ratio of production to dissipation

R =
Pk
ρε

. (5.54)

This modification is used in all simulations where the standard k − ε model is used.

The source terms for k and ε are calculated for each element based on the centroid values and

are integrated over the elemental volume. The source term for each element is split evenly among

all nodes contained in the elements. The k and ε equations are integrated in time using either

fully implicit or Crank-Nicolson schemes, with iterations and relaxation (typically 10 and 0.5-0.9)

to couple the k and ε equations. The process to solve the k − ε equations is

1. Solve the k equation with relaxation

2. Solve the ε equation with relaxation

3. Repeat steps 1 and 2 until convergence (or n iterations)

4. Calculate µT

Calculation of of turbulent quantities are done once per time step, after the momentum and conti-

nuity equations are solved for the time step.

5.2 Results

5.2.1 Backwards Facing Step

The first test case of turbulent simulation on unstructured grids is the flow over a backwards

facing step. Figure 5.2 shows the case setup, in which flow through a upper channel reaches a sudden
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expansion over a backwards facing step. The flow separates from the wall, and a recirculation

region exists for some distance xr. The ratio of the lower channel height (HL) to the step height

(H) is R = HL/H. Driver [82] conducted an experiment with R = 12, while Yoder [83] presented

simulation results using both k − ε and SST RANS models using R = 9 and compared to the

experiments of Driver. Present simulations use R = 9 and compare to both Driver and Yoder

data. The Reynolds number for this case is Re = ρUiH/µ = 36, 000, where Ui is the uniform inlet

velocity.

H

HL

Inlet

Outlet

xr

x

y

Figure 5.2: Backward facing step case.

Two cases are tested, both run with IRK-SIMPLER until a steady state is reached. The first

case simulates flow through the upper channel (starting with uniform inflow at the inlet), along

with the step and lower channel. The second case sets an inlet profile at x = 0 that matches the

Driver data at the step, and only simulates the flow in the lower channel (x > 0).

For present testing, the upper channel has a height of 8H and a length of 100H to allow the

channel flow to fully develop before reaching the step. The lower channel has a height of 9H and

a length of 50H.

The first set of grids are created by inputting the boundaries of the domain into Triangle grid

generator [84], which generates a triangular grid using Delaunay triangulation. An example section
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of this type of grid is shown in Fig. 5.3. Using this type of grid results in a skin friction coefficient,

Cf , distribution on the wall that is not smooth, as seen in Fig. 5.5. The next set of grids are created

by including a wall layer by adding lines parallel to the wall surfaces offset by a small distance and

again using the Triangle grid generator. An example section of this improved grid is shown in Fig.

5.4. The second type of grid, with a wall layer, results in a smooth skin friction coefficient on the

wall (Fig. 5.5) and allows for some control of the height of the first grid point, which is important

for wall functions.

The grid used for the results presented has a wall layer with an offset of 0.00866H, which

resulted in 9 < y+ < 14 for the standard k − ε model (SKE) and 4 < y+ < 16 for the realizable

k − ε model (RKE).

x/H

y/H

0.0 0.5 1.0 1.5
-0.2

0.0

0.2

0.4

0.6

0.8

Figure 5.3: Section of grid for the backward facing near the step wall without a wall layer.
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Figure 5.4: Section of grid for the backward facing near the step wall with a wall layer

.

0 10 20x
H

-0.004

-0.002

0

0.002

0.004

0.006

Cf

Grid without Wall Layer
Grid with Wall Layer

Figure 5.5: Backward facing step skin friction coefficient along step wall.
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5.2.1.1 Simulation Including Upper Channel

For these simulations, the flow is set to uniform flow on the inlet of the upper channel (with zero

turbulence intensity) and the outlet of the lower channel an outflow corrected for mass conservation.

All other boundaries are no-slip walls. The domain is initialized to uniform velocity, pressure, and

turbulent quantities (free-stream values). The turbulence intensity and length scale are set to

I = 0.10 and l = 0.025, to improve stability for the initial time steps.

Figures 5.6 and 5.7 show the profiles of u and k, respectively, at five locations (x/H = 0, 4, 8, 12,

and 16) after the solution has reached steady state. The results are compared to the experimental

results from Driver [82]. The RKE model matches experiments well for u in the recirculation

region near the bottom of the lower wall, but not further away from the wall. The profile at the

step (x/H = 0) does not match the experimental trend for RKE. The SKE u profiles are not

as close in the recirculating region, but match the trends better above y/H = 1. For k profiles,

the SKE model matches the first two locations better, but RKE matches the further downstream

locations better.

0 4 8 12 16 20 24

x
H + 10 ∗ u

uref

0

1

2

3

4

y
H

Driver Data
SKE
RKE

Figure 5.6: Backward facing step u velocity profiles at x/H = 0, 4, 8, 12, 16 with the upper channel.
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Figure 5.7: Backward facing step k profiles at x/H = 0, 4, 8, 12, 16 with the upper channel.

The skin friction coefficient is plotted along the bottom of the upper and lower channels in

Fig. 5.8, along with the Driver results and four computation results found in Yoder [83]. The

SKE model predicts the skin friction quite well over the entire range, but with the minimum value

shifted to the right compared to other results. The RKE model falls close to the SST model for

the recirculating range, but ends up with a friction coefficient much higher at the end of the lower

channel. Both methods follow experimental results better than the k− ε models shown, which have

a large peak after the recirculating region.

5.2.1.2 Simulation Setting Inflow at Step

Because flow at the step varies from the experiment, particularly for RKE, velocity and k profiles

are set at the step (x/H = 0) and only the lower channel is simulated. Results for this case (SKE

and RKE) are shown in Figs. 5.9–5.11. The velocity profiles for SKE are closer to the experiment

than RKE, but they both match more closely above y/H = 1 than when the upper channel was

simulated. k profiles also match better away from the wall than before, but both SKE and RKE

over-predict k near the wall. For skin friction coefficient, RKE matches better near the step but
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Figure 5.8: Backward facing step skin friction coefficient along step wall with the upper channel.

overshoots near the outlet (although less than with the upper channel), while SKE matches well

downstream and not as well near the step.

Table 5.3 gives the recirculation length for the backward facing step, with data from Driver and

Yoder.
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Figure 5.9: Backward facing step u velocity profiles at x/H = 0, 4, 8, 12, 16 with no upper channel.
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Figure 5.10: Backward facing step k profiles at x/H = 0, 4, 8, 12, 16 with no upper channel.
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Figure 5.11: Backward facing step skin friction coefficient along step wall with no upper channel.

Table 5.3: Backwards facing step recirculation length (xr/H.

Source Model xr/H

Driver [82] Experiment 6.26

Yoder [83] NPARC k − ε 5.31

Yoder [83] WIND k − ε 5.30

Yoder [83] WIND k − ε Variable Cµ 5.55

Yoder [83] WIND SST 6.43

Present Simulation SKE 7.16

Present Simulation RKE 5.56

Present Simulation SKE w/ Inlet 5.68

Present Simulation RKE w/ Inlet 6.95
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5.2.2 Turbulent Vortex Shedding from a Square Cylinder

The next test case is the unsteady vortex shedding from behind a two-dimensional square

cylinder. Although the RANS equations are time averaged, unsteady flows can still be simulated.

The turbulence model captures lower energy turbulence, while the high energy associated with the

mean flow vortex shedding is captured explicitly by the unsteady Navier-Stokes equations [36].

The square cylinder (Fig. 5.12) is centered at the origin, and the domain spans −5L ≤ x ≤ 15

and −7 ≤ y ≤ 7. The Reynolds number is Re = ρUiL/µ = 22, 000 [85]. The grid is refined around

the cylinder and in the wake, with a near wall grid that results in 3 ≤ y+ ≤ 35.

Both SKE and RKE models are used. The RKE model uses the Crank-Nicolson method for time

integration, but the SKE model was unstable for all tested time step sizes using Crank-Nicolson

and fully implicit was used instead.

Ui
L

L

Figure 5.12: Square cylinder case.

The IRK-SIMPLER algorithm is used with a time step size of ∆t′ = ∆t/(Ui/L) = 0.05 and

simulations ran until t′ = 400. Similar to the flat plate, after some time vortices shed from the square

cylinder and eventually begin to shed at a constant frequency and magnitude. Figure 5.13 shows

the coefficient of lift and drag on the cylinder for SKE and RKE. After t′ = 150 the frequency and

amplitude are constant for both methods. The SKE results have lower amplitude oscillations than

the RKE results. The coefficient of drag for SKE appears constant, but there are oscillations with

a small RMS. The average coefficient of drag, Strouhal number, recirculation length for averaged
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solutions (xr/L), and RMS values of drag and lift coefficient ((Cd)rms and (Cl)rms) are given in

Table 5.4 and compared to other results found in Iaccarino [85].

0 100 200

t′

-2

-1

0

1

2

3

Cl

Cd

SKE
RKE

Figure 5.13: Square cylinder coefficient of lift and drag for SKE and RKE.

Table 5.4: Square cylinder results.

Source Model Cd Sr xr/L (Cd)rms (Cl)rms
Lyn [86] Experiment 2.1 0.132 1.38 — —

Lee [87] Experiment 2.05 — — 0.16-0.23 —

Vickery [88] Experiment 2.05 — — 0.1-0.2 0.68-1.32

Rodi [89] LES 2.2 0.13 1.32 0.14 1.01

Rodi [89] Two-Layer k − ε 2.004 0.143 1.25 — —

Iaccarino [85] v2 − f [90] 2.22 0.141 1.45 0.056 1.83

Present Simulation SKE 1.72 0.128 2.95 0.022 0.185

Present Simulation RKE 2.15 0.147 1.43 0.029 1.174

The solutions are averaged in time after t′ = 200 until the final time of t′ = 400. Figures

5.14-5.17 show time averaged velocity profiles at five locations, x/L = 0.875, 1.125, 1.875, 3.5 and

y/L = 0. The RKE results match the experimental results of Lyn and computational results of

Iaccarino well, but the SKE results do not, particularly further down stream. The likely cause of

the errors in SKE is because the Fully Implicit time integration method is used, which is only first

order accurate.
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Figure 5.14: Square cylinder u/Ui profile at x/L = 0.875.

-0.5 0 0.5 1 1.5

u/Ui

0

1

2

3

y/L

Lyn
Iaccarino
SKE
RKE

Figure 5.15: Square cylinder u/Ui profile at x/L = 1.125.
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Figure 5.16: Square cylinder u/Ui profile at x/L = 1.875.
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Figure 5.17: Square cylinder u/Ui profile at x/L = 3.5.



www.manaraa.com

170

1 2 3 4 5

x/L

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

u/Ui

Lyn
Iaccarino
SKE
RKE

Figure 5.18: Square cylinder u/Ui profile at y/L = 0.

5.3 Conclusions

The triangular unstructured scheme with IRK-SIMPLER and the k − ε turbulence model ac-

curately simulates both steady and unsteady turbulent flows. The standard k − ε model results

match the experimental trends well for the steady backward facing step case, but due to stability

issues, the Fully Implicit scheme is required for unsteady cases, which gives inaccurate results. The

realizable k − ε model results match experiments well for both the steady and unsteady problems,

and is able to use Crank-Nicolson to give accurate unsteady results.

For triangular grids, results are more smooth and accurate when a line of nodes is created

parallel to the wall surface, like in a structured grid. For more complex geometries, another grid

topology, such as prisms or hexahedral cells, can be created normal to the surface to provide a

better method for boundary layer problems.
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CHAPTER 6. ROTOR MODELING

The IRK-SIMPLER algorithm is tested, alongside SIMPLER and RK-SIMPLER, by simulating

flows around wind turbines. Both structured and unstructured grid formulations are used to test

IRK-SIMPLER. The structured method has the advantage of relative simplicity in calculating

fluxes and coefficients, as well as efficient linear solvers (ex. line-by-line TDMA), but for large

scale wind farms a structured grid might not be the most appropriate. Unstructured grids, on the

other hand, are natural for wind farms as they can be clustered near the turbines and in the wake

regions, while remaining coarse in regions where the flow is relatively uniform. The disadvantages

of unstructured grids are the additional computations required to calculate and reconstruct fluxes

and the difficulty in increasing the spatial accuracy. Because both methods have merits, they are

both tested to see how RK based algorithms behave.

6.1 Rotor Source Formulation

The momentum source method (as developed in [40],[41],[42],[43]) uses ideas from the blade

element momentum theory to discretize a blade and impart its forces onto the flow through the

momentum equation sources. Because the blades are not modeled as bodies in the domain, coarser

grids that do not require grid movement can be used.

6.1.1 Rotor Coordinate Systems

Starting from the Cartesian coordinate system that the flow is solved on, several coordinates

systems are defined to aid in developing the momentum sources.



www.manaraa.com

172

6.1.1.1 Rotor Cartesian Coordinates (ξ, η, ζ)

A Cartesian coordinate system is fixed to the rotor with the origin at the rotor center. The

coordinate ξ is normal to the rotor disk and aligned with the axis of rotation (with a rotation speed

Ω), while η and ζ are normal to the axis of rotation (Fig. 6.1). A positive rotation speed Ω is a

clockwise rotation, and a negative rotation speed is counter-clockwise. The incoming velocity Vi is

expected to be in the direction of êξ for typical cases, like a horizontal axis wind turbine (HAWT)

with no yaw angle or a helicopter in hover.

êξ

êη

Ω

êη

êζ

Ω

êξ

êη

êζ

~Vi

Figure 6.1: Rotor Cartesian coordinate system.
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If the rotor is centered at the global Cartesian coordinates (xR, yR, zR), the transfer from (x, y, z)

to (ξ, η, ζ) is


ξ

η

ζ

 =


cos(B) sin(B) sin(A) − sin(B) cos(A)

0 cos(A) sin(A)

sin(B) − cos(B) sin(A) cos(B) cos(A)



x− xR

y − yR

z − zR

 (6.1)

= M


x− xR

y − yR

z − zR

 , (6.2)

where the transformation first rotates by angle B about the y-axis, then by angle A about the

x-axis. For a HAWT with free-stream velocity in the x-direction, the angle B is set the yaw angle

if angle A is set to 90 degrees. For a helicopter rotor, angle B is set to 90 degrees and angle A

controls the banking of the rotor (with an angle A = 0 leading to a rotor normal to the z direction).

The transformation matrix is orthogonal, leading to the following inverse transformation.
x

y

z

 = M−1


ξ

η

ζ

+


xR

yR

zR

 (6.3)

The velocity is transformed similarly.
uξ

uη

uζ

 = M


u

v

w



u

v

w

 = M−1


uξ

uη

uζ

 (6.4)

6.1.1.2 Rotor Cylindrical Coordinates (r, θ, z)

A cylindrical coordinate system is fixed to the rotor with the origin at the rotor center. Figure

6.2 shows the rotor with both Cartesian and cylindrical coordinates.
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Figure 6.2: Rotor cylindrical and Cartesian coordinate system.

The transformations between the rotor Cartesian to cylindrical coordinate systems are
vr

vθ

vz

 =


0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

1 0 0



vξ

vη

vζ

 (6.5)


vξ

vη

vζ

 =


0 0 1

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0



vr

vθ

vz

 . (6.6)

6.1.1.3 Rotor Local Blade Coordinates (n, θ, s)

A local coordinate system is created on the blades that follows the deflection of the blade out

of the z = 0 plane, where, at any given point, the deflection angle is δ (Fig. 6.3). For a rigid rotor

with a constant cone angle, δ is a constant for all blade sections. The coordinate s follows the blade

surface from the rotor center to the radius R, and the coordinate n is normal to the surface.
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êr

êsên

δ

Figure 6.3: Rotor local and cylindrical coordinate system.

The transformations between the rotor cylindrical and local coordinate systems are
vn

vθ

vs

 =


sin(δ) 0 − cos(δ)

0 1 0

cos(δ) 0 sin(δ)



vr

vθ

vz

 (6.7)


vr

vθ

vz

 =


sin(δ) 0 cos(δ)

0 1 0

− cos(δ) 0 sin(δ)



vn

vθ

vs

 (6.8)

6.1.2 Discrete Rotor Blade Sections

The momentum source method for rotors starts by discretizing the blades into a number of

radial sections with a control point at the center of each section (Fig. 6.4). Typically around 100

radial sections accurately discretize the blades.
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Figure 6.4: Rotor discretization.

6.1.2.1 HAWT Blade Section Relative Velocity

Up to this point, the formulation has been general to any rotor, but from here on the focus

will be on HAWT rotors. As the rotor blades move through the domain and intersect grid cells,

the relative velocity on the blades is found by first converting the flow velocity from (u, v, w) to

(vn, vθ, vs) using Eqs. 6.4, 6.5, and 6.7. Noting that Ω = dθ
dt , the blades are moving with velocity

(vθ)b = rΩ in the êθ direction and (vn)b in the ên direction. The (vn)b velocity comes from any

flapping terms (or unsteady out-plane deflection), which are not common for wind turbine blades.

The relative velocity over the blades is found by

v′n = vn − (vn)b (6.9)

v′θ = vθ − (vθ)b = vθ − rΩ (6.10)

v′s = vs , (6.11)

where (vn, vθ, vs) is the velocity of the flow at the blade section and (v′n, v
′
θ, v
′
s) is the relative

velocity on the blade section. This velocity is used to calculate the airfoil angle of attack and

coefficients. Because the airfoil sections are two-dimensional, only the n and θ velocity components

are considered when calculating the airfoil forces.
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6.1.2.2 Airfoil Section Angles and Forces

Figure 6.5 shows the n− θ plane, on which each airfoil section is located. The direction of the

airfoil depends on whether the rotor is spinning clockwise or counter-clockwise (Figs. 6.6 and 6.7).

In the clockwise Fig. 6.6, v′n < 0 and v′θ < 0, and in the counter-clockwise Fig. 6.7, v′n < 0 and

v′θ > 0. These values are typical, but not true in all cases. The angle φ is the airfoil section pitch

angle and is determined by the blade twist distribution and the blade pitch angle. The relative

velocity magnitude is v′ =
√

(v′n)2 + (v′θ)
2.

ên

êθ
β

v′

−rΩ vθ

v′θ = vθ − rΩ

v′n

Figure 6.5: Airfoil section n− θ plane.

Given the relative velocity components v′n and v′θ, the flow angle β is

β = tan−1

(
v′n
v′θ

)
. (6.12)

Angle β′ is calculated for clockwise and counter-clockwise as

Clockwise Counter-Clockwise

β′ = 180o + β β′ = 360o − β . (6.13)

The airfoil angle of attack is then given by

α = β′ − φ . (6.14)
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ên

êθ

β′
v′α

φ

Dsec
Lsec

Figure 6.6: Airfoil orientation for clockwise
rotation.

ên

êθ

β′v′ α

φ

Dsec

Lsec

Figure 6.7: Airfoil orientation for counter-
clockwise rotation.

The airfoil coefficient of lift and drag are found by look up values from a table. The coefficients

are functions of angle of attack and can also be dependent on Mach number, Reynolds number, or

any other parameters causes different airfoil characteristics.

Cl = Cl(α,M,Re, ...) Cd = Cd(α,M,Re, ...) (6.15)

From the two-dimensional coefficients, section lift and drag are calculated by

Lsec =

[
1

2
ρ(v′)2c

]
Cl Dsec =

[
1

2
ρ(v′)2c

]
Cd , (6.16)

where c is the chord length of the airfoil at the section of interest.

The section lift and drag are transformed to forces in the n and θ directions by

Clockwise Counter-Clockwise

(Fn)sec = − cos(β′)Lsec − sin(β′)Dsec (Fn)sec = − cos(β′)Lsec − sin(β′)Dsec (6.17)

(Fθ)sec = sin(β′)Lsec − cos(β′)Dsec (Fθ)sec = − sin(β′)Lsec + cos(β′)Dsec . (6.18)
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The forces are transformed back into the (r, θ, z) system by

(Fr)sec = sin(δ)(Fn)sec (6.19)

(Fθ)sec = (Fθ)sec (6.20)

(Fz)sec = − cos(δ)(Fn)sec . (6.21)

From here, two tasks are required. The first is to integrate forces over the entire blade to

find the rotor performance (thrust, torque, and power). The thrust and torque are calculated by

integrating the forces over the span of all the blades (Nb is the total number of blades).

T =

Nb∑
n=1

∫ R

r=rhub

(Fz)sec dr (6.22)

Q =

Nb∑
n=1

∫ R

r=rhub

r(Fθ)sec dr , (6.23)

where T is thrust, Q is torque, and rhub is the radius where the hub and rotor meet. The rotor

power is computed as

P = QΩ . (6.24)

The second task is to add forces into the momentum equation sources. The section forces are

integrated over the section to yield

Fr = ∆r(Fn)sec (6.25)

Fθ = ∆r(Fθ)sec (6.26)

Fz = ∆r(Fn)sec . (6.27)

These forces are transformed first into (ξ, η, ζ) coordinates by Eq. 6.6, then to (x, y, z) using the

M−1 matrix in Eq. 6.1, giving force on each radial section center at ~F = (Fx, Fy, Fz).

This is the force acting on the blade, therefore, the force acting on the fluid must be −~F . So,

as each radial section center intersects a cell, the force is transferred to the momentum equations
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for that cell by

bu = bu − Fx (6.28)

bv = bv − Fy (6.29)

bw = bw − Fz . (6.30)

6.1.3 Steady Rotor Model

The steady rotor model looks at all cells intersected by the blades over the full 360 degree

rotation and weights the momentum source by the fraction of rotation that occurs in each cell.

W =
Nb∆θcell

2π
(6.31)

where W is the weighting applied to the blade section force before it is added into the momentum

source, Nb is the number of rotor blades, and ∆θcell is the angle the rotor blades sweep between

entering and exiting a grid cell in radians. The steady rotor model averages the rotor forces that

occur over the full rotation for each time step. The benefit of the steady rotor model is the ability to

yield good results on relatively coarse grids with large time step sizes (or using a steady algorithm).

The disadvantage of the steady model is the unsteady effects, like the tip and root vortex, cannot

be captured. Because of this an unsteady rotor model is often desired.

For the steady rotor model, all cells intersected by the rotor are computed in the preprocessing

step, before time steps start. The procedure for detecting intersected cells is as follows.

• Loop through all radial sections of a rotor.

– Find the first cell intersected at θ = 0.

– Loop through θ.

∗ Increase θ until it reaches the face of the currently intersected cell.

∗ Store information about the cell being intersected including θcut, ∆θcell, rcut, and

Ncut−total.
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∗ Once θ = 0 again (i.e. all ∆θcut add up to 2π). Exit and go to next radial section.

Note that θcut is the value of θ midway between the two face intersection points, rcut is the radius

for the given intersection, and NCut−Total is the total number of intersections made by the rotor.

Every time the rotor source needs to be computed the following procedure is used.

• Loop through all intersections (NCut−Total).

– Find the flow velocity at the current rcut and θcut.

– Find the integrated force on that section.

– Include the force in the momentum equations as

bu = bu −WFx = bu − Nb∆θcell
2π Fx

bv = bv −WFy = bv − Nb∆θcell
2π Fy

bw = bw −WFz = bw − Nb∆θcell
2π Fz.

It should be noted that the rotor source is computed at each stage of the IRK-SIMPLER algorithm

and included in the unsteady source terms with another weighting term based on the DIRK method

coefficients.

6.1.4 Unsteady Rotor

The unsteady rotor model considers the blade locations to be time accurate, with each blade

moving by and angle ∆θblade = Ω∆t each time step (where Ω is the rotor rotation speed and

∆t = tn+1 − tn is the time step size). As each blade section moves through ∆θblade, more than one

grid cell can be intersected. Three different methods are developed to handle the unsteady rotor

intersections and source calculation.

6.1.4.1 Method 1

The first method is similar to the steady rotor model, and the rotor source is calculated and

added to all cells intersected within the time step and weighted by

W =
∆θcell
Ω∆t

=
∆θcell

∆θblade
. (6.32)
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tn
tn+1∆θblade

∆θcell1 ∆θcell2

cell1 cell2

Figure 6.8: Unsteady rotor rotation and intersection of grid cells.

For example, if there is a small time step size then only one cell might be intersected, in which case

the weighting is equal to one. On the other hand, for larger time step sizes and/or small grid cells,

many grid cells might be intersected by a blade section and the rotor source is weighted and added

to each. Figure 6.8 shows an example in which two cells are intersected. This method averages the

source out over the entire time step.

The procedure for detecting the intersected cells at each time step for method 1 is as follows.

• Loop through all rotor blades.

– Loop through all radial sections of a rotor.

∗ Find the first cell intersected at θ = θn.

∗ Loop through θ.

· Increase θ until it reaches the face of the currently intersected cell .

· If θ for the next face is past θn+1, use θn+1 for the out face value.

· Store information about the cell being intersected including θcut, ∆θcell, rcut,

and Ncut−total.
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· Once θ = θn+1 (i.e. all ∆θcut add up to ∆θblade, exit and go to next radial

section.

– Once all radial sections are complete, go to the next blade.

This procedure is similar to the steady rotor, except the intersections for each individual blade is

found and the blades are swept through ∆θblade, not 2π.

The procedure for adding the rotor force to the momentum equations is similar to the steady

procedure, except the weighting term is now from Eq. 6.32.

6.1.4.2 Method 2

The second method keeps the rotor blade at one location in time tn+1 (at the end of the time

step) and adds the rotor source into all the cells intersected. For this method, each blade section

only intersects one cell each time step, and all the source goes to that cell. This is similar to the

Fully Implicit or Euler implicit integration method.

6.1.4.3 Method 3

The last method uses a time integration method that integrates the momentum equations in

time to find both the location and weight for the rotor source. For SIMPLER and RK-SIMPLER,

Crank-Nicolson (i.e. trapezoid or midpoint method) is used with half of the source at time tn and

half at time tn+1. Using Crank-Nicolson, the blade intersections are found at time tn (with one

intersection for each blade section), and the velocities at time tn are used to find the rotor source

with a weighting of half. The other half of the source is found by calculating the rotor intersections

at time tn+1 and using the velocities at tn+1 to find the rotor source. Using IRK-SIMPLER, both

two and three stage methods are used, and each stage the intersections are found and the rotor

source is computed with the stage velocities and the weights directly from the DIRK method. This

is different from methods 1 and 2, which both find the intersected cells once and use the velocities

at tn and tn+1 for SIMPLER and RK-SIMPLER, or use the stage velocities for IRK-SIMPLER to

find the rotor source. Method 3 uses both time accurate blade locations and time accurate velocity
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values to compute the rotor source. This method is motivated by the results in Appendix A, which

show the importance of using the stage time to evaluate unsteady sources.

Figure 6.9 shows the pattern for each unsteady source method for an exaggerated time step

with ∆θblade = 30o. In Fig. 6.9, method 3 shows the source for IRK-SIMPLER with the two stage

DIRK method.

Method 1 Method 2 Method 3
Stage 1

Stage 2

Figure 6.9: Rotor source contours for three unsteady rotor source methods1.

For both the steady and unsteady rotor sources, when adding the rotor source to a grid cell in

the staggered Cartesian structured grid, all the source is added to the cell which has a cell centered

velocity component. For the vertex-centered tetrahedral unstructured grid, the rotor source is

calculated as it intersects a tetrahedral cell, and the rotor source is added to that cell. To add the

rotor source to each control volume, the two methods were tested had little difference. The first

method adds a quarter of the tetrahedral element rotor source to all four nodes that make up the

element. The second method adds the source to each node with a fraction based on the inverse of

the square of the distance to each node, so that the closer the intersection is to a node the larger

the source is for that node. The difference between the two methods is small, and the seconds

method is used for the results given in present work.

The momentum source method uses known two-dimensional airfoil data (from experiments or

computations) to look up the forces on discretized rotor blade sections. That airfoil data (namely

coefficient of lift and drag) are then integrated into forces for each blade section and added into the

1Red is low magnitude and blue is high magnitude rotor source. Method 3 is shown with DIRK2.
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momentum equations as a source term. The momentum source model is applied to vertical axis

wind turbines [40], helicopters [41],[42],[43], and horizontal axis wind turbines [44].

The momentum source model uses the following steps to impart the wind turbine blade forces

onto the flow:

1. Discretize the rotor blade into many sections along the radius of the blade.

2. Find the cells intersected by the blade sections at any point in time.

3. For each intersected cell, find the relative velocity on the blade section.

4. Using known, two-dimensional airfoil data, look up the airfoil lift and drag coefficients, which

are a function of velocity magnitude, angle of attach, Reynolds number, Mach number, and

other effects.

5. Add the three-dimensional force for each blade section into the intersected cells.

6. Integrate the force over all blade sections to find the total forces and moments on the rotor.

6.2 Results

To test different algorithms, a test case of the NREL Combined Experiment Rotor [91] is used

(a 10 meter diameter, stall regulated, constant pitch horizontal axis wind turbine). The rotor is

simulated as an isolated turbine with no tower, nacelle, ground, or atmospheric boundary layer.

The domain boundary is spaced 7.5D away from the rotor in all directions except in the downwind

direction which is 15D away from the rotor. Specifications for the turbine are given in Table 6.1.

6.2.1 Steady Simulations

The turbine is simulated over a range of wind speeds from 7 m/s to 23 m/s, with and without

the tip correction model. The rotor power is computed, and generator power is found from the

relationship given in [92]

Pgen = 0.9036Protor − 0.847 , (6.33)
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Table 6.1: NREL combined experiment rotor specifications.

Diameter 10 m

Number of Blades 3

Rotation Speed 72 RPM

Chord (constant) 0.45 m

Hub Radius (r/R) 0.14

Blade Pitch 12o

Cone Angle 3.5o

Twist (constant) 0o

Airfoil (constant) s809

where both generator and rotor power are measured in kW . Figure 6.10 shows the generator power

versus wind speed with and without tip correction, respectively. The results for both the structured

and unstructured grids match well. The data is compared to the power curve given by NREL in

Butterfield [91], experimental results from Duque [92], and three computational results presented in

Duque. The computational results include a Blade Element Method called YAWDYN/AERODYN

[93], and a vortex-lattice method known as CAMRAD II [94] using a free wake model, with and

without a stall delay model developed by Du and Selig [95].

The present results for the structured and unstructured grids follow the trends in the external

results with an over-prediction in power before stall (around 15 m/s), and under-prediction of

power after stall that has similarities to other numerical results.
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Figure 6.10: Steady power production with (bottom) and without (top) tip correction.
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The SIMPLER, RK-SIMPLER, and IRK-SIMPLER algorithms all result in the same steady

power prediction. Table 6.2 shows the runtime for the structured grid results, and Table 6.3 shows

the runtime for the unstructured grid results. For the structured grid simulations, the SIMPLER

algorithm was run in steady mode and did not require a time step size. In the unstructured grid

simulations, the SIMPLER algorithm was also tested in steady mode, but was quicker to converge

in unsteady mode a with time step size of ∆t = 0.10 seconds. The runtime for the minimum

and maximum wind speeds tested are both given in Table 6.3 to demonstrate the low sensitivity

to wind speed of IRK-SIMPLER compared to the other algorithms. The SIMPLER and RK-

SIMPLER algorithms required lower time step sizes when the wind speed is increased from 7 m/s

to 23 m/s, but IRK-SIMPLER is able to take the same time step size and converge for the entire

range of wind speeds.

Table 6.2: Structured steady rotor runtime.

Algorithm Time Step (s) Runtime Speedup

SIMPLER N.A. 3.38 1.0

RK-SIMPLER 0.03 1.04 3.3

IRK-SIMPLER(2) 0.20 1.48 2.3

Table 6.3: Unstructured steady rotor runtime.

Algorithm Time Step (s) Runtime Speedup

Wind Speed = 7 m/s

SIMPLER 0.10 1.01 1.0

RK-SIMPLER 0.005 0.57 1.8

IRK-SIMPLER(2) 0.10 0.22 4.6

Wind Speed = 23 m/s

SIMPLER 0.08 0.38 1.0

RK-SIMPLER 0.002 0.43 0.9

IRK-SIMPLER(2) 0.10 0.11 3.5
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6.2.2 Unsteady Simulations

The unsteady rotor model is also used to simulate the NREL rotor with same problem spec-

ifications. The three different unsteady rotor methods are first tested on the same grid as the

steady rotor, with a wind speed of 10.5 m/s and no tip correction. The time step size varies and

the simulations run for 14 seconds of simulation time. The average generator power is computed

starting at four seconds of simulation time.

Figure 6.11 shows the average generator power for these simulations on the unstructured grid

for the IRK-SIMPLER and RK-SIMPLER algorithms, respectively, for the three unsteady rotor

methods. For the IRK-SIMPLER algorithm with the 2 stage DIRK method, IRK-SIMPLER(2),

methods 1 and 2 give similar results, and approach a value of 8 kW as the time step size decreases.

For method 3, a value of 8 kW is also approached, but does not change as much with time step size

and is closer to 8 kW at the highest time step tested. For method 3, where new source is found each

stage, the three stage IRK-SIMPLER(3) is shown and results in similar but slightly lower power.

For RK-SIMPLER, all three methods are similar and farther from the value of 8 kW than all

IRK-SIMPLER methods at each time step. Comparing results, the IRK-SIMPLER(2) algorithm

with unsteady rotor method 1 is the most accurate, followed by IRK-SIMPLER(3) method 3,

IRK-SIMPLER(2) methods 1 and 2, while the least accurate method is RK-SIMPLER using any

method.

The SIMPLER algorithm with Crank-Nicolson time integration and unsteady rotor method 2

is the baseline algorithm. Tables 6.4 and 6.5 show the time step required to achieve an accurate,

unsteady generator power (set as 7.5kw < Pgen < 8.5kW ) for structured and unstructured grid

results respectively (where IRK-SIMPLER uses unsteady rotor method 3 and RK-SIMPLER uses

method 2). On the structured grid, IRK-SIMPLER(3) has the advantage of being able to take

the highest time step size of 0.01 seconds and give accurate results, while the same method on the

unstructured grid does not converge for the time step size. The highest speedup for the structured

grid is IRK-SIMPLER(3), and for the unstructured grid is IRK-SIMPLER(2).
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Figure 6.11: Average unsteady rotor power production for V=10.5 m/s (number of stages in paren-
thesis).
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Table 6.4: Structured unsteady rotor runtime.

Algorithm Time Step (s) Runtime Speedup

SIMPLER 0.0001 550.0 1.0

RK-SIMPLER 0.0001 16.6 33.1

IRK-SIMPLER(2) 0.001 6.75 81.5

IRK-SIMPLER(3) 0.01 1.23 447.2

Table 6.5: Unstructured unsteady rotor runtime.

Algorithm Time Step (s) Runtime Speedup

SIMPLER 0.0001 926.0 1.0

RK-SIMPLER 0.0001 64.3 14.4

IRK-SIMPLER(2) 0.001 19.9 46.5

IRK-SIMPLER(3) 0.001 29.9 31.0

Using the unstructured IRK-SIMPLER algorithm with two stage DIRK, the average generator

power versus wind speed is computed with and without tip correction, and is shown in Fig. 6.12.

The unsteady power falls lower than the steady power in the region before stall (about 15 m/s)

and closer to the experimental power. In the region after stall, the unsteady power drops off less

dramatically than the steady power.

6.2.3 Tip Vortex Capturing

The wake caused by a wind turbine exists far downstream and influences other turbines. Turbine

forces and power can be accurately predicted on relatively coarse grids, with grid refinement just

around the rotor and in the near wake, but to accurately capture the wake, more refined grids in

the far wake region are required. For a large array of turbines, the grid becomes large and increases

the runtime. Flux schemes that accurately capture the wake and tip vortex of a turbine on coarser

grids allows for faster simulation. In Chapter 4 different flux schemes were investigated.
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Figure 6.12: Unsteady power production with (bottom) and without (top) tip correction.
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For the present test case of the unsteady NREL rotor, the structured grid simulations use the

Power Law and QUICK schemes, and the unstructured grid simulations use the Power Law and

FCM schemes. For a wind speed of 10.5 m/s, Fig. 6.13 shows the tip vortex in the wake on

the same structured grid for the Power Law and QUICK schemes. The plots show iso-surfaces of

vorticity magnitude and the colors are u velocity contours. The Power Law scheme solution shows

the tip vortex dissipating almost immediately, while the QUICK scheme shows the tip vortex

convecting downstream some distance before dissipating. The QUICK scheme is more qualitatively

representative of the real tip vortex, which can exist far downstream of the turbine (see examples

in Churchfield [47]).

The same case is simulated on the unstructured grid with Power Law and FCM schemes and

plotted in Fig. 6.14. Both schemes show similar results which more closely match the structured

Power Law results. Unfortunately, the improvement from Power Law to QUICK is not also seen

from Power Law to FCM. Perhaps the advantage of QUICK is the larger stencil that may help to

more accurately resolve the tip vortex further downstream. These type of large stencil methods are

not easily possible in unstructured grid, but what is possible and can improve the results is adaptive

grid refinement which automatically refines the grid based on flow gradients and properties.
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Figure 6.13: Unsteady wake using the structured PL (top) and QUICK (bottom) schemes.
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Figure 6.14: Unsteady wake using the unstructured PL (top) and FCM (bottom) schemes.
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6.2.4 Turbulent Wake Capturing

Wind turbines and their wakes are impacted by turbulence, both atmospheric and created in

the turbine wakes. To accurately simulate turbines, the realizable k − ε model is used to simulate

the turbulent flow. The turbine used to test the wake profile with turbulence is the downwind Nibe

wind turbine [96]. The Nibe turbine specifications are given in Tables 6.6 and 6.7.

Table 6.6: Nibe rotor specifications.

Diameter 40 m

Number of Blades 3

Rotation Speed 34 RPM

Hub Radius (r/R) 0.10

Blade Pitch 2o

Cone Angle 6.0o

Twist (constant) 2o

Airfoil (constant) NACA 4412

Table 6.7: Nibe rotor chord distribution
(constant taper).

r/R chord/R

0.1 0.116667

1.0 0.027778

The Nibe turbine is simulated without tower and nacelle and in a turbulent boundary layer

defined by

u(z) = uref
ln(z/zo)

ln(zref/zo)
k =

(u∗)2√
Cµ

ε(z) =
(u∗)3

κz
, (6.34)

where z is the distance above the ground, zref is the reference height (hub height= 45 m), zo

is the roughness height (0.01 m), uref is the velocity at hub height (13 m/s), Cµ = 0.09, and

u∗ = κuref/ ln(zref/zo). These problem specifications follow Murali [44].

The realizable k − ε RANS model simulates the turbulent flow, as discussed in Chapter 5, for

the unstructured vertex-based tetrahedral grid. For the windspeed of 13 m/s, the steady rotor

model is used with and without the k − ε model with the same boundary layer profiles given for

u. Figures 6.15 and 6.16 show the wake profiles for laminar and turbulent simulation, respectively,

at four different x/R locations (2.5, 4, 6, and 7.5) downwind of the turbine. Results are compared

to the experimental values of Taylor [96] and computation results of Murali [44] (which used the

realizable k − ε model on a structured grid with the same steady rotor momentum source model).
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Figure 6.15: Wake profiles at four downwind locations without turbulence modeling (top: lateral
profiles at z = 0, bottom: vertical profiles at y = 0).
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These results show that without the turbulence modeling, the wake profile maintains a similar

profile far downstream without much dissipation. With the realizable k− ε model the wake profiles

dissipate due to turbulent mixing in the wake region. The wake profiles match both experimental

and computational results well along z/D = 1 and moderately well along y/D = 0. Near the

ground, profiles differ significantly due to the coarse grid used near the ground. Grid refinement

near the ground and in the wake region would likely better match the computational results of

Murali (also using the realizable k − ε model); however, refinement near the ground dramatically

increases the number of nodes and runtime. Using tetrahedral elements in the ground boundary

layer is not efficient and is not recommended. Other element types should be investigated, such as

hexahedron and prisms.

6.3 Conclusions

The IRK-SIMPLER algorithm reduces the runtime to simulate the flow around a wind turbine

with momentum source modeling. Using the steady rotor model, IRK-SIMPLER predicted power

that matches the legacy SIMPLER algorithm and explicit RK-SIMPLER algorithm, while requiring

between 2.3 and 4.6 less runtime than SIMPLER.

Three unsteady rotor models are tested, with a new formulation in method 3 allowing IRK-

SIMPLER to achieve accurate results at a higher time step than the two other methods. Using the

new unsteady rotor model with IRK-SIMPLER allows up to 447.2 times less runtime than SIM-

PLER (with the original rotor model) to achieve accurate time averaged power for the structured

grid, and 46.5 time less runtime for the unstructured grid. The unsteady rotor model predicts lower

power than the steady rotor model and more closely matches experimental power.

The QUICK scheme was most capable of capturing the tip vortex in the wake of the unsteady

rotor model on a relatively coarse grid. On unstructured grids, the schemes tested (Power Law and

FCM) were both unable to accurately capture the tip vortex and require grid refinement to do so.

The wake profiles downstream are dramatically different between laminar and turbulent simu-

lation, with turbulent modeling matching experimental data better. The turbulent modeling with
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the unstructured grid improves results over the laminar simulation on the same grid, but further

refinement and study is suggested. Also, the use of purely tetrahedral grids of approximately iso-

metric size (which is desirable for the median-dual formulation used) does not allow for efficient

grids in a three-dimensional boundary layer.
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

The IRK-SIMPLER algorithm proves to be an efficient and accurate algorithm for steady and

unsteady flows in two- and three-dimensions. Both structured Cartesian grids and unstructured

grids are tested, and IRK-SIMPLER is the most efficient algorithm for all cases. IRK-SIMPLER

is capable of up to third order accuracy in time, but (with the exception of the unsteady rotor) the

two stage, second order method gives accurate results in less runtime.

The IRK-SIMPLER algorithm is used to test several different flux schemes and is an accurate

and stable algorithm for all methods. IRK-SIMPLER is also tested with RANS turbulence mod-

eling. Finally, the IRK-SIMPLER algorithm is tested with wind turbines using the momentum

source model. For the wind turbine case, IRK-SIMPLER is faster achieve accurate results than

SIMPLER or RK-SIMPLER.

The unstructured FCM scheme provides more accurate results than the unstructured Power

Law scheme with very little extra runtime. The end result is a scheme that can give accurate

results using a coarser grid and in less runtime. The FCM scheme accurately calculates momentum

flux as well as the turbulent k and ε fluxes.

The RANS equations are solved using k − ε models (standard and realizable) on unstructured,

vertex-centered grids using wall functions. The results for both steady and unsteady cases compare

well to experimental and computational results. A disadvantage of unstructured grids for turbulent

problems is the lack of control of the grid spacing normal to walls. For more complex body shapes,

another form of grid besides purely triangles or tetrahedral cells is recommended.

Wind turbines are simulated using a momentum source model on both structured, Cartesian

and tetrahedral, unstructured grids. The power production for both grids match experiments well

in the region before stall. The unsteady rotor is modeled with three different intersection and
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source calculation methods. The method that uses the time integration method (and particularly

the DIRK methods) to find the intersections and sources provides the best convergence with time

step size. The unsteady rotor model power prediction matches the experiments better than the

steady model.

This result opens the question of why the unsteady rotor results appear more accurate. Is the

model able to capture the physics of the unsteady rotor better and is more accurate? Refining the

grid (or developing more accurate spatial methods) for both the steady and unsteady rotor models

(and reducing time step size for the unsteady model) will help gain more insight.

The rotor model applies the sources completely into each grid cell being intersected. Future

work should test and compare the methods using Gaussian and elliptic distributions of the source.

Using the QUICK scheme on structured grids allows the tip vortex coming off of a wind tur-

bine to be more accurately captured downstream, while the Power Law scheme in structured and

unstructured and the unstructured FCM scheme results in a tip vortex that dissipated immedi-

ately. Researching adaptive grid refinement or higher order tetrahedral elements is recommended

to improve the unstructured capability.

Another open issue is the pressure oscillations seen for small time step sizes on the vertex-

centered unstructured grids. Other researchers find this problem and develop methods to reduce

or remove the effects [61],[62],[63]. This line of research should be investigated and applied to the

current methods.
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APPENDIX A. INTEGRATION OF UNSTEADY SOURCE TERMS WITH

RUNGE-KUTTA METHODS

The Runge-Kutta method integrates an equation with the form of Eq. 2.26, where F is a

function of the variable φ(t), but also is a function of source terms that are unsteady, b(t). As a

test case, the following equation is used

dφ

dt
= −φ+ cos(t) , (A.1)

where b(t) = cos(t). Using the initial condition φ(0) = 1, the exact solution is φ(t) = 0.5[exp(−t) +

sin(t) + cos(t)]. A two stage explicit RK method is used to integrate this equation with coefficients

γ2 = 0.5 α2,1 = 0.5 (A.2)

β1 = 0.0 β2 = 1.0 . (A.3)

The integration using these coefficients leads to the stage values and next step value

φ1 = φn (A.4)

φ2 = φn + 0.5∆t
[
− φ1 + cos(t)

]
(A.5)

φn+1 = φn + ∆t
[
− φ2 + cos(t)

]
. (A.6)

The unsteady source term cos(t) is evaluated twice, and the time at which to evaluate it is examined.

Three methods are tested. Method 1 uses the time value tn to evaluate all unsteady source terms

φ1 = φn (A.7)

φ2 = φn + 0.5∆t
[
− φ1 + cos(tn)

]
(A.8)

φn+1 = φn + ∆t
[
− φ2 + cos(tn)

]
, (A.9)
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method 2 uses the time value tn+1 to evaluate all source terms

φ1 = φn (A.10)

φ2 = φn + 0.5∆t
[
− φ1 + cos(tn+1)

]
(A.11)

φn+1 = φn + ∆t
[
− φ2 + cos(tn+1)

]
, (A.12)

and method 3 uses the time value for each stage being evaluated

φ1 = φn (A.13)

φ2 = φn + 0.5∆t
[
− φ1 + cos(t1)

]
(A.14)

= φn + 0.5∆t
[
− φ1 + cos(tn + γ1∆t)

]
(A.15)

= φn + 0.5∆t
[
− φ1 + cos(tn)

]
(A.16)

φn+1 = φn + ∆t
[
− φ2 + cos(t2)

]
(A.17)

= φn + ∆t
[
− φ2 + cos(tn + γ2∆t)

]
(A.18)

= φn + ∆t
[
− φ2 + cos(tn + 0.5∆t)

]
. (A.19)

Any Runge-Kutta scheme can use this method of evaluating the unsteady sources at each stage

time ts = tn + γs∆t.

The test problem is integrated with these three different methods, all for a time step size of

∆t = 0.1. Figure A.1 shows the resulting φ(t) for the three methods along with the exact solution.

Method 3 falls on top of the exact solution, while methods 1 and 2 are above and below the exact

solution with an error that grows with time. This result shows that source terms that are dependent

on time are most accurate when evaluated at the stage time (method 3). A key case of this is the

unsteady rotor model (Sec. 6.1.4), where the rotor source is moving in time. The most accurate

unsteady rotor method uses the stage time to find the rotor intersection and the rotor source.

Within the Runge-Kutta methods, stage values are not necessarily as accurate as the final

update value, φn+1. However, Fig. A.2 shows the stage values alongside the final update and exact

solution for the same test problem. The stage values are reasonably close to the exact solution.
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Figure A.1: Solution to the test problem with three different source methods.
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Figure A.2: Solution to the test problem with method 3 and stage values shown.
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APPENDIX B. APPROXIMATE AND LU FACTORIZATIONS

The solution of momentum equations using IRK-SIMPLER(A) with ESDIRK methods provides

opportunity to use a factorization of the coefficient matrix. For the present research, a combination

of approximate factorization and LU factorization are investigated.

Runge-Kutta starts with the discrete momentum equations in the form

dφ

dt
= F (φ, t) , (B.1)

and for structured grids

F (φ, t) =
aEφE + aWφW + aNφN + aSφS − aPφP + b

ρ∆∀
. (B.2)

This ODE is integrated from time level n to n+ 1 with a time step size of ∆t.

The solution of the equations with EDIRK methods involve S stages to be solved, each with a

system of equations. The stage values for ESDIRK methods are

φ1 = φn (B.3)

φs = φn + k∆t F
(
φs, t

n + γs∆t
)

+ ∆t
s−1∑
l=1

αs,lF
(
φl, t

n + γl∆t
)

for 2 ≤ s ≤ S . (B.4)

For IRK-SIMPLER(A), the coefficients of the momentum equations are calculated once and held

constant for all stages. As each stage is solved, the same coefficient matrix is used at each stage.

This means a system of equations is solved at each stage where the coefficients do not change,

but only the source term changes. To take advantage of this, a LU factorization and approximate

factorization are used.

Approximate factorization splits the x and y derivatives and simplifies the two-dimensional

system of equations into two groups of one-dimensional tri-diagonal (tridi) systems, which can be

solved with less computational effort. Starting with the discrete momentum equation, new central
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coefficients are defined for x and y derivatives.

dφ

dt
=

(aEφE + aWφW − axPφP ) +
(
aNφN + aSφS − ayPφP

)
+ b

ρ∆∀
(B.5)

axP = aE + aW ayP = aN + aS (B.6)

Integrating this with ESDIRK methods leads to an equation with the following form for each stage

s > 1.

φs = φn + k
∆t

ρ∆∀
[
(aEφE + aWφW − axPφP ) +

(
aNφN + aSφS − ayPφP

)
+ b
]
s

+ b̃s , (B.7)

with

b̃s = ∆t

s−1∑
l=1

αs,lF (φl, t
n + γl∆t) . (B.8)

After defining ∆φ = φs − φn

∆φP = k
∆t

ρ∆∀

[
(aE∆φE + aW∆φW − axP∆φP ) (B.9)

+
(
aN∆φN + aS∆φS − ayP∆φP

) ]
i
+ b̃s + k∆tF (φn, tn)

By defining two operators fx and fy which operate on ∆φP

fx∆φP = aE∆φE + aW∆φW − axP∆φP (B.10)

fy∆φP = aN∆φN + aS∆φS − ayP∆φP (B.11)

The following equation is formed.[
1− k ∆t

ρ∆∀
fx − k

∆t

ρ∆∀
fy

]
∆φP = b̃s + k∆tF (φn, tn) (B.12)

Making an approximate factorization of the form[
1− k ∆t

ρ∆∀
fx − k

∆t

ρ∀
fy

]
≈
(

1− k ∆t

ρ∆∀
fx

)(
1− k ∆t

ρ∆∀
fy

)
. (B.13)

The error associated with this factorization is (k∆t/ρ∆∀)2fxfy. With this factorization, each

stage is solved in three steps:
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• Step 1: Solve ∆φ∗P from (
1− k ∆t

ρ∆∀
fx

)
∆φ∗P = b̃s + k∆tF (φn, tn) . (B.14)

• Step 2: Solve ∆φP from (
1− k ∆t

ρ∆∀
fy

)
∆φP = ∆φ∗P . (B.15)

• Step 3: Find (φP )s

(φP )i = ∆φP + φnP . (B.16)

Step 1 consists of a group of tridi matrix equations, with the unknowns being neighbors in the

x-direction. For each grid line of constant y, one tridi matrix equation is solved. Similarly for step 2,

for each grid line of constant x, one tridi matrix equation is solved with unknowns being neighbors

in the y-direction. Step 3 is simply updating the value of φs, and requires little computational

effort.

Along side the approximate factorization, an LU factorization reduces the computation by

taking advantage of the fact that both
(

1− k ∆t
ρ∆∀fx

)
and

(
1− k ∆t

ρ∆∀fy

)
are the same for every

stage in a time step. LU factorization is a procedure to decomposed a matrix into lower and upper

triangular matrices. For a matrix equation of the form

A~x = ~b , (B.17)

the LU factorization process involves solving two simpler matrix equations of the form

L~y = ~b (B.18)

U~x = ~y , (B.19)

where A = LU . The solution procedure for these two matrix equations is computationally less

expensive than solving the original equation.

For the ESDIRK methods, the equivalent A matrices for both step 1 and step 2 are constant

for all stages. By using the LU factorization, the L and D matrices for both step 1 and step 2 are

found once at the beginning of the time step and used for all stages.

An approximate factorization for three-dimensions is treated in a similar fashion (see [97]).
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APPENDIX C. MULTIGRID METHODS FOR IRK-SIMPLER(B)

Multigrid methods allow linear systems of equations to be solved with fewer computations and

less runtime than traditional methods [98],[99]. There are a variety of multigrid methods developed

for many different problems. For incompressible flow, a multigrid method developed based on the

SIMPLER algorithm is called FAS-SIMPLER [100]. A similar multigrid method is developed for

unsteady incompressible flow based on the IRK-SIMPLER(B) algorithm to improve the convergence

rate at each time step.

In the IRK-SIMPLER algorithm, to reach a converged solution (where all equations have low

residual) at each time step, several iterations must be completed. This is where most computations

occur in the IRK-SIMPLER algorithm. To speed up the convergence rate, multigrid methods are

developed.

The non-linear system of equations to be solved has the form

Au = f . (C.1)

When attempting to solve for u, after some iteration an approximate value v is known. The error

is defined as e = u − v. This error is not computable without knowing the exact solution for u.

A computable measure of how close the equation is to being satisfied is the residual, r = f − Av.

Equation C.1 is rearranged as

Ae = r . (C.2)

Using common iterative solution methods like Gauss-Seidel on a single grid quickly removes

high frequency errors, but low frequency errors require many iterations to be removed. To remedy

this, transferring the problem to coarser grids (called restriction) allows the low frequency errors to

be removed much quicker. In FAS multigrid methods the variable being solved for (u) is restricted

to coarser grids. This is useful for non-linear problems where the coefficients are dependent on
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the variables. In non-FAS methods, only the error (e) is restricted to coarser grids. For the non-

linear incompressible Navier-Stokes equations, the coefficients are dependent on the variables, so

FAS multigrid methods are used in the present research. The notation for the restriction of values

from a fine grid k to a coarse grid k − 1 is Ik−1
k vk. The restriction of a field variable (u, v, or

p) in the present research is accomplished by bi-linear interpolation in two dimensions, and tri-

linear interpolation in three dimensions. The restriction of the residuals for finite volume methods

(which are integrated quantities) requires an addition, not an interpolation, of the fine grid residuals

contained in each coarse grid volume.

After some iterations on the fine grid, high frequency errors are removed while low frequency

errors still remain. At this point we call the solution vkold and calculate the residual rk. On the

coarse grid the error is defined by

ek−1 = uk−1 − Ik−1
k vkold . (C.3)

Substituting this into Equation C.2 leads to the equation to be solved on the coarse grid k − 1.

Ak−1uk−1 = Ik−1
k rk +Ak−1(Ik−1

k vkold) (C.4)

The value of uk−1 is initialized to Ik−1
k vkold when starting on the next coarser grid level. After

some iterations on the coarse grid, the low frequency errors are removed. These values are then

restricted to the next coarser grid in the same manner. Once the coarsest grid is reached, the errors

are prolonged back up to the finer grids. The notation for prolongation of values from a coarse grid

k − 1 to a fine grid k is Ikk−1v
k−1. For the present research, all prolongation is accomplished with

bi- or tri-linear interpolation. The correction of fine grid values is found by

vknew = vkold + Ikk−1(vk−1 − Ik−1
k vkold) . (C.5)

By prolonging errors to the fine grid, some high frequency errors are introduced, so a few more

iterations are typically used to reduce them. The error is then prolonged to the next finer grid

until the finest grid level is reached. At this point one multigrid iteration is completed. This form

of multigrid iterations is called V-cycle [99], where all grid levels are visited in order from fine
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to coarse while restricting, and then all grid levels are visited in order from coarse to fine while

prolonging. In the presented simulations, the V-cycle is used in the IRK-SIMPLER algorithm with

a fixed number of three iterations on each grid level. This fixed number has not been rigorously

optimized, and future research could include examining the impact of the number of iterations at

each grid level.

Another form of multigrid iterations is called cycle-C [98]. Instead of visiting each grid level in

order, cycle-C determines whether to move to a coarser or finer grid by monitoring the residuals.

For the present simulations the residual value monitored is the sum of the L2 norm of all the

momentum equation residuals, r = L2(rx−mom) + L2(ry−mom) + L2(rz−mom). Cycle-C moves up

or down grids at any point during iterations as criteria are met.

When determining whether to restrict to a coarser grid, the convergence rate, or the rate that

residuals are dropping, is monitored. If the convergence rate is slow on the current grid, the high

frequency errors are removed, and the values are restricted to the next coarser grid. Restriction

will occur if

rk > ηrklast , (C.6)

where rklast is the residual value from the last iteration on the current grid level. The value of η is

taken from Brandt at 0.6. Whenever moving to a new grid level, the value of rklast is initialized to

a large value, rklast →∞.

When determining whether to prolong to a finer gird, the convergence level, or the magnitude

of the current residual, is monitored. If the convergence level is below a tolerance for that grid

level, its solution is converged and the values will be prolonged to the next finer gird. Prolongation

will occur if

rk < rktol . (C.7)

On the finest grid, k = N , the value of rNtol is the overall tolerance level for the problem. If this

criteria is met on the finest grid level, then the solution is found. On coarser grid levels, the value

of rktol is determined by a parameter δ and the next finer grid level residual by

rktol = δrk+1
last . (C.8)
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In other words, if the residual on a coarse grid level is less than the residual on the next finer level

by a specified amount, δ, that solution is determined to be converged and is prolonged to the next

finer grid level. The value of δ is taken from Brandt as 0.3. This cycle-C method of Brandt allows

for the most efficient use of multiple grid levels by monitoring the residual and determining the

optimal time to restrict and prolong. On the other hand, the V-cycle simply goes up and down

the grid levels in order, whether or not the convergence rate is slow or if the solution is converged.

Both the V-cycle and cycle-C are applied to the IRK-SIMPLER algorithm to determine if the

convergence rate can be improved.

In the IRK-SIMPLER algorithm, iterative loops are preformed, which simultaneously solve

pressure and velocity. To obtain a converged solution, many iterations are required each stage.

Multigrid methods are applied to reduce the number of computations required to get a converged

solution at each RK stage. The initial solution of the momentum equations in IRK-SIMPLER is

only solved once and does not use the multigrid method. The multigrid methods are used in the

iterative loops to accelerate the convergence rate of pressure and momentum equations. When using

multigrid methods with the IRK-SIMPLER algorithm, the pressure and velocity are restricted and

prolonged and the residual of the pressure and momentum equations are restricted. Each time a

new grid level is reached, the non-linear momentum and pressure coefficients are computed with

the latest approximation.

Both V-cycle and cycle-C multigrid methods are applied to IRK-SIMPLER. A diagram of the

V-cycle multigrid IRK-SIMPLER algorithm is shown in Fig. C.1, and a diagram of the cycle-C

multigrid IRK-SIMPLER algorithm is shown in Fig. C.2.
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Figure C.1: Diagram of v-cycle multigrid IRK-SIMPLER algorithm.
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Figure C.2: Diagram of cycle-C multigrid IRK-SIMPLER algorithm.
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Results

Multigrid methods are more efficient than single grid methods when a system of equations

are solved to a low residual level. In the previous sections, simulations were run with only a few

iterations to complete the simulation as fast as possible. Although the results were accurate, the

residual values were not guaranteed to reach a certain level each time step. The IRK-SIMPLER

algorithm can instead be run with as many iterations as required to reach a given residual tolerance.

Figure C.3 shows the mass and momentum residuals versus CPU time for the IRK-SIMPLER

algorithm and the multigrid IRK-SIMPLER method for one RK stage. The single grid method

residuals drop quickly at first, when the high frequency errors are being removed, but they drop

much slower when removing the low frequency errors. The multigrid method allows the residual to

drop consistently at a constant rate, but for about the first 25 seconds, the single grid momentum

residuals are actually lower than the multigrid method.
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Figure C.3: Residual values with and without multigrid for IRK-SIMPLER.

The multigrid IRK-SIMPLER algorithm is tested on the unsteady flat plate normal to the flow

(Sec. 2.4.3.1) and the unsteady infinite square cylinder with the QUICK scheme (Sec. 4.1.2.2).

The same structured Cartesian grids are used as in previous tests. The flat plate is run with a time
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Table C.1: Two-dimenional flat plate results with multigrid (7 grid levels).

Multigrid Residual ∆t Cd at Sr at CPU Time at Speedup

Method Tolerance (sec.) ∆t ∆t ∆t (min.) at ∆t

IRK — 1× 10−6 4× 10−5 2.339 0.150 130.77 1.0

IRK V-cycle 1× 10−6 4× 10−5 2.339 0.150 72.26 1.8

IRK cycle-C 1× 10−6 4× 10−5 2.339 0.150 34.12 3.8

IRK — 1× 10−8 4× 10−5 2.339 0.150 317.83 1.0

IRK V-cycle 1× 10−8 4× 10−5 2.339 0.150 170.05 1.9

IRK cycle-C 1× 10−8 4× 10−5 2.339 0.150 95.52 3.3

step of ∆t′ = 0.08, and the square cylinder with a time step of ∆t′ = 0.60. The number of inner

iterations for IRK-SIMPLER are as many as needed to yield a specified residual tolerance. Results

are given in Tables C.1 and C.2.

For the flat plate, the speedup for both tolerance levels are similar, with cycle-C resulting in

faster speedup (up to 3.8). For the square cylinder, multigrid does not decrease the runtime when

the residual tolerance is 1× 10−6, but for a residual tolerance of 1× 10−8, cycle-C reduces runtime

by 50% while V-cycle reduces runtime by 24%.

Table C.2: Three-dimensional square cylinder results with multigrid (4 grid levels).

Multigrid Residual CD at CPU Time at Speedup

Method Tolerance ∆t ∆t (min.) at ∆t

IRK — 1× 10−6 1.684 473.35 1.0

IRK V-cycle 1× 10−6 1.640 886.37 0.5

IRK cycle-C 1× 10−6 1.665 594.05 0.8

IRK — 1× 10−8 1.685 1486.07 1.0

IRK V-cycle 1× 10−8 1.666 1131.68 1.3

IRK cycle-C 1× 10−8 1.683 743.78 2.0

The square cylinder case presented here has a relatively coarse grid. Multigrid methods are

most effective for highly refined grids with large systems of equations. More research is suggested

to investigate the IRK-SIMPLER algorithm with multigrid for simulations with more refined grids.
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